Molecular cloning and characterization of satellite DNA sequences from constitutive heterochromatin of the habu snake (Protobothrops flavoviridis, Viperidae) and the Burmese python (Python bivittatus, Pythonidae)

Highly repetitive DNA sequences of the centromeric heterochromatin provide valuable molecular cytogenetic markers for the investigation of genomic compartmentalization in the macrochromosomes and microchromosomes of sauropsids. Here, the relationship between centromeric heterochromatin and karyotype...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Chromosoma 2015-12, Vol.124 (4), p.529-539
Hauptverfasser: Matsubara, Kazumi, Uno, Yoshinobu, Srikulnath, Kornsorn, Seki, Risako, Nishida, Chizuko, Matsuda, Yoichi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 539
container_issue 4
container_start_page 529
container_title Chromosoma
container_volume 124
creator Matsubara, Kazumi
Uno, Yoshinobu
Srikulnath, Kornsorn
Seki, Risako
Nishida, Chizuko
Matsuda, Yoichi
description Highly repetitive DNA sequences of the centromeric heterochromatin provide valuable molecular cytogenetic markers for the investigation of genomic compartmentalization in the macrochromosomes and microchromosomes of sauropsids. Here, the relationship between centromeric heterochromatin and karyotype evolution was examined using cloned repetitive DNA sequences from two snake species, the habu snake ( Protobothrops flavoviridis , Crotalinae, Viperidae) and Burmese python ( Python bivittatus , Pythonidae). Three satellite DNA (stDNA) families were isolated from the heterochromatin of these snakes: 168-bp PFL-MspI from P. flavoviridis and 196-bp PBI-DdeI and 174-bp PBI-MspI from P. bivittatus . The PFL-MspI and PBI-DdeI sequences were localized to the centromeric regions of most chromosomes in the respective species, suggesting that the two sequences were the major components of the centromeric heterochromatin in these organisms. The PBI-MspI sequence was localized to the pericentromeric region of four chromosome pairs. The PFL-MspI and the PBI-DdeI sequences were conserved only in the genome of closely related species, Gloydius blomhoffii (Crotalinae) and Python molurus , respectively, although their locations on the chromosomes were slightly different. In contrast, the PBI-MspI sequence was also in the genomes of P. molurus and Boa constrictor (Boidae), and additionally localized to the centromeric regions of eight chromosome pairs in B. constrictor , suggesting that this sequence originated in the genome of a common ancestor of Pythonidae and Boidae, approximately 86 million years ago. The three stDNA sequences showed no genomic compartmentalization between the macrochromosomes and microchromosomes, suggesting that homogenization of the centromeric and/or pericentromeric stDNA sequences occurred in the macrochromosomes and microchromosomes of these snakes.
doi_str_mv 10.1007/s00412-015-0529-6
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1751229004</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1751229004</sourcerecordid><originalsourceid>FETCH-LOGICAL-c471t-ae2613db23775228eeae59a6e49278c132ef9f44c7af5e321a2a3615a3b99aaa3</originalsourceid><addsrcrecordid>eNqNks9u1DAQxiMEotvCA3BBlrgsEgHbiZP4WEr5IxXoAbhGE2fSuCRxsJ2VynPyQMxuCkJISJwsz_y-mfH4S5JHgj8XnJcvAue5kCkXKuVK6rS4k2xEnlGkqoq7yYZzrlOlhTpKjkO43l9lwe8nR7KQXCmebZIf792AZhnAMzO4yU5XDKaWmR48mIjefodo3cRcxwJEHAYbkb36cMoCfltwMhhY593IjJtCtHGJdoesR1I601OC1Adx7CkMzcLCBF-RbS-9i65xkZiZSgywczvrbWvDM_bFztS4BXx6mGUvfbn4EQOy-Sb2NM32cj0bu7MxQlxItYYOsgfJvQ6GgA9vz5Pk8-vzT2dv04uPb96dnV6kJi9FTAFlIbK2kVlZKikrREClocBcy7IyIpPY6S7PTQmdwkwKkJAVQkHWaA0A2UmyXevO3tE2QqxHGwwtCSZ0S6hFqYSUmn7pP9CsqoTWRUnok7_Qa7f4iR5CVK4LIUWuiRIrZbwLwWNXz96O4G9qweu9O-rVHTW5o967oy5I8_i28tKM2P5W_LIDAXIFAqWmK_R_tP5n1Z83jclu</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1749612149</pqid></control><display><type>article</type><title>Molecular cloning and characterization of satellite DNA sequences from constitutive heterochromatin of the habu snake (Protobothrops flavoviridis, Viperidae) and the Burmese python (Python bivittatus, Pythonidae)</title><source>MEDLINE</source><source>SpringerLink Journals - AutoHoldings</source><creator>Matsubara, Kazumi ; Uno, Yoshinobu ; Srikulnath, Kornsorn ; Seki, Risako ; Nishida, Chizuko ; Matsuda, Yoichi</creator><creatorcontrib>Matsubara, Kazumi ; Uno, Yoshinobu ; Srikulnath, Kornsorn ; Seki, Risako ; Nishida, Chizuko ; Matsuda, Yoichi</creatorcontrib><description>Highly repetitive DNA sequences of the centromeric heterochromatin provide valuable molecular cytogenetic markers for the investigation of genomic compartmentalization in the macrochromosomes and microchromosomes of sauropsids. Here, the relationship between centromeric heterochromatin and karyotype evolution was examined using cloned repetitive DNA sequences from two snake species, the habu snake ( Protobothrops flavoviridis , Crotalinae, Viperidae) and Burmese python ( Python bivittatus , Pythonidae). Three satellite DNA (stDNA) families were isolated from the heterochromatin of these snakes: 168-bp PFL-MspI from P. flavoviridis and 196-bp PBI-DdeI and 174-bp PBI-MspI from P. bivittatus . The PFL-MspI and PBI-DdeI sequences were localized to the centromeric regions of most chromosomes in the respective species, suggesting that the two sequences were the major components of the centromeric heterochromatin in these organisms. The PBI-MspI sequence was localized to the pericentromeric region of four chromosome pairs. The PFL-MspI and the PBI-DdeI sequences were conserved only in the genome of closely related species, Gloydius blomhoffii (Crotalinae) and Python molurus , respectively, although their locations on the chromosomes were slightly different. In contrast, the PBI-MspI sequence was also in the genomes of P. molurus and Boa constrictor (Boidae), and additionally localized to the centromeric regions of eight chromosome pairs in B. constrictor , suggesting that this sequence originated in the genome of a common ancestor of Pythonidae and Boidae, approximately 86 million years ago. The three stDNA sequences showed no genomic compartmentalization between the macrochromosomes and microchromosomes, suggesting that homogenization of the centromeric and/or pericentromeric stDNA sequences occurred in the macrochromosomes and microchromosomes of these snakes.</description><identifier>ISSN: 0009-5915</identifier><identifier>EISSN: 1432-0886</identifier><identifier>DOI: 10.1007/s00412-015-0529-6</identifier><identifier>PMID: 26205503</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Animal Genetics and Genomics ; Animals ; Base Sequence ; Biochemistry ; Biomedical and Life Sciences ; Boa constrictor ; Boidae ; Boidae - genetics ; Cell Biology ; Cloning, Molecular ; Crotalinae ; Developmental Biology ; DNA, Satellite - chemistry ; Eukaryotic Microbiology ; Evolution, Molecular ; Heterochromatin ; Human Genetics ; In Situ Hybridization, Fluorescence ; Karyotype ; Life Sciences ; Molecular Sequence Data ; Original Article ; Python molurus ; Sequence Analysis, DNA ; Trimeresurus - genetics ; Viperidae</subject><ispartof>Chromosoma, 2015-12, Vol.124 (4), p.529-539</ispartof><rights>Springer-Verlag Berlin Heidelberg 2015</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c471t-ae2613db23775228eeae59a6e49278c132ef9f44c7af5e321a2a3615a3b99aaa3</citedby><cites>FETCH-LOGICAL-c471t-ae2613db23775228eeae59a6e49278c132ef9f44c7af5e321a2a3615a3b99aaa3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00412-015-0529-6$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00412-015-0529-6$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26205503$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Matsubara, Kazumi</creatorcontrib><creatorcontrib>Uno, Yoshinobu</creatorcontrib><creatorcontrib>Srikulnath, Kornsorn</creatorcontrib><creatorcontrib>Seki, Risako</creatorcontrib><creatorcontrib>Nishida, Chizuko</creatorcontrib><creatorcontrib>Matsuda, Yoichi</creatorcontrib><title>Molecular cloning and characterization of satellite DNA sequences from constitutive heterochromatin of the habu snake (Protobothrops flavoviridis, Viperidae) and the Burmese python (Python bivittatus, Pythonidae)</title><title>Chromosoma</title><addtitle>Chromosoma</addtitle><addtitle>Chromosoma</addtitle><description>Highly repetitive DNA sequences of the centromeric heterochromatin provide valuable molecular cytogenetic markers for the investigation of genomic compartmentalization in the macrochromosomes and microchromosomes of sauropsids. Here, the relationship between centromeric heterochromatin and karyotype evolution was examined using cloned repetitive DNA sequences from two snake species, the habu snake ( Protobothrops flavoviridis , Crotalinae, Viperidae) and Burmese python ( Python bivittatus , Pythonidae). Three satellite DNA (stDNA) families were isolated from the heterochromatin of these snakes: 168-bp PFL-MspI from P. flavoviridis and 196-bp PBI-DdeI and 174-bp PBI-MspI from P. bivittatus . The PFL-MspI and PBI-DdeI sequences were localized to the centromeric regions of most chromosomes in the respective species, suggesting that the two sequences were the major components of the centromeric heterochromatin in these organisms. The PBI-MspI sequence was localized to the pericentromeric region of four chromosome pairs. The PFL-MspI and the PBI-DdeI sequences were conserved only in the genome of closely related species, Gloydius blomhoffii (Crotalinae) and Python molurus , respectively, although their locations on the chromosomes were slightly different. In contrast, the PBI-MspI sequence was also in the genomes of P. molurus and Boa constrictor (Boidae), and additionally localized to the centromeric regions of eight chromosome pairs in B. constrictor , suggesting that this sequence originated in the genome of a common ancestor of Pythonidae and Boidae, approximately 86 million years ago. The three stDNA sequences showed no genomic compartmentalization between the macrochromosomes and microchromosomes, suggesting that homogenization of the centromeric and/or pericentromeric stDNA sequences occurred in the macrochromosomes and microchromosomes of these snakes.</description><subject>Animal Genetics and Genomics</subject><subject>Animals</subject><subject>Base Sequence</subject><subject>Biochemistry</subject><subject>Biomedical and Life Sciences</subject><subject>Boa constrictor</subject><subject>Boidae</subject><subject>Boidae - genetics</subject><subject>Cell Biology</subject><subject>Cloning, Molecular</subject><subject>Crotalinae</subject><subject>Developmental Biology</subject><subject>DNA, Satellite - chemistry</subject><subject>Eukaryotic Microbiology</subject><subject>Evolution, Molecular</subject><subject>Heterochromatin</subject><subject>Human Genetics</subject><subject>In Situ Hybridization, Fluorescence</subject><subject>Karyotype</subject><subject>Life Sciences</subject><subject>Molecular Sequence Data</subject><subject>Original Article</subject><subject>Python molurus</subject><subject>Sequence Analysis, DNA</subject><subject>Trimeresurus - genetics</subject><subject>Viperidae</subject><issn>0009-5915</issn><issn>1432-0886</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNqNks9u1DAQxiMEotvCA3BBlrgsEgHbiZP4WEr5IxXoAbhGE2fSuCRxsJ2VynPyQMxuCkJISJwsz_y-mfH4S5JHgj8XnJcvAue5kCkXKuVK6rS4k2xEnlGkqoq7yYZzrlOlhTpKjkO43l9lwe8nR7KQXCmebZIf792AZhnAMzO4yU5XDKaWmR48mIjefodo3cRcxwJEHAYbkb36cMoCfltwMhhY593IjJtCtHGJdoesR1I601OC1Adx7CkMzcLCBF-RbS-9i65xkZiZSgywczvrbWvDM_bFztS4BXx6mGUvfbn4EQOy-Sb2NM32cj0bu7MxQlxItYYOsgfJvQ6GgA9vz5Pk8-vzT2dv04uPb96dnV6kJi9FTAFlIbK2kVlZKikrREClocBcy7IyIpPY6S7PTQmdwkwKkJAVQkHWaA0A2UmyXevO3tE2QqxHGwwtCSZ0S6hFqYSUmn7pP9CsqoTWRUnok7_Qa7f4iR5CVK4LIUWuiRIrZbwLwWNXz96O4G9qweu9O-rVHTW5o967oy5I8_i28tKM2P5W_LIDAXIFAqWmK_R_tP5n1Z83jclu</recordid><startdate>20151201</startdate><enddate>20151201</enddate><creator>Matsubara, Kazumi</creator><creator>Uno, Yoshinobu</creator><creator>Srikulnath, Kornsorn</creator><creator>Seki, Risako</creator><creator>Nishida, Chizuko</creator><creator>Matsuda, Yoichi</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QP</scope><scope>7QR</scope><scope>7TK</scope><scope>7TM</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>RC3</scope><scope>7X8</scope></search><sort><creationdate>20151201</creationdate><title>Molecular cloning and characterization of satellite DNA sequences from constitutive heterochromatin of the habu snake (Protobothrops flavoviridis, Viperidae) and the Burmese python (Python bivittatus, Pythonidae)</title><author>Matsubara, Kazumi ; Uno, Yoshinobu ; Srikulnath, Kornsorn ; Seki, Risako ; Nishida, Chizuko ; Matsuda, Yoichi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c471t-ae2613db23775228eeae59a6e49278c132ef9f44c7af5e321a2a3615a3b99aaa3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Animal Genetics and Genomics</topic><topic>Animals</topic><topic>Base Sequence</topic><topic>Biochemistry</topic><topic>Biomedical and Life Sciences</topic><topic>Boa constrictor</topic><topic>Boidae</topic><topic>Boidae - genetics</topic><topic>Cell Biology</topic><topic>Cloning, Molecular</topic><topic>Crotalinae</topic><topic>Developmental Biology</topic><topic>DNA, Satellite - chemistry</topic><topic>Eukaryotic Microbiology</topic><topic>Evolution, Molecular</topic><topic>Heterochromatin</topic><topic>Human Genetics</topic><topic>In Situ Hybridization, Fluorescence</topic><topic>Karyotype</topic><topic>Life Sciences</topic><topic>Molecular Sequence Data</topic><topic>Original Article</topic><topic>Python molurus</topic><topic>Sequence Analysis, DNA</topic><topic>Trimeresurus - genetics</topic><topic>Viperidae</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Matsubara, Kazumi</creatorcontrib><creatorcontrib>Uno, Yoshinobu</creatorcontrib><creatorcontrib>Srikulnath, Kornsorn</creatorcontrib><creatorcontrib>Seki, Risako</creatorcontrib><creatorcontrib>Nishida, Chizuko</creatorcontrib><creatorcontrib>Matsuda, Yoichi</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Chromosoma</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Matsubara, Kazumi</au><au>Uno, Yoshinobu</au><au>Srikulnath, Kornsorn</au><au>Seki, Risako</au><au>Nishida, Chizuko</au><au>Matsuda, Yoichi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Molecular cloning and characterization of satellite DNA sequences from constitutive heterochromatin of the habu snake (Protobothrops flavoviridis, Viperidae) and the Burmese python (Python bivittatus, Pythonidae)</atitle><jtitle>Chromosoma</jtitle><stitle>Chromosoma</stitle><addtitle>Chromosoma</addtitle><date>2015-12-01</date><risdate>2015</risdate><volume>124</volume><issue>4</issue><spage>529</spage><epage>539</epage><pages>529-539</pages><issn>0009-5915</issn><eissn>1432-0886</eissn><abstract>Highly repetitive DNA sequences of the centromeric heterochromatin provide valuable molecular cytogenetic markers for the investigation of genomic compartmentalization in the macrochromosomes and microchromosomes of sauropsids. Here, the relationship between centromeric heterochromatin and karyotype evolution was examined using cloned repetitive DNA sequences from two snake species, the habu snake ( Protobothrops flavoviridis , Crotalinae, Viperidae) and Burmese python ( Python bivittatus , Pythonidae). Three satellite DNA (stDNA) families were isolated from the heterochromatin of these snakes: 168-bp PFL-MspI from P. flavoviridis and 196-bp PBI-DdeI and 174-bp PBI-MspI from P. bivittatus . The PFL-MspI and PBI-DdeI sequences were localized to the centromeric regions of most chromosomes in the respective species, suggesting that the two sequences were the major components of the centromeric heterochromatin in these organisms. The PBI-MspI sequence was localized to the pericentromeric region of four chromosome pairs. The PFL-MspI and the PBI-DdeI sequences were conserved only in the genome of closely related species, Gloydius blomhoffii (Crotalinae) and Python molurus , respectively, although their locations on the chromosomes were slightly different. In contrast, the PBI-MspI sequence was also in the genomes of P. molurus and Boa constrictor (Boidae), and additionally localized to the centromeric regions of eight chromosome pairs in B. constrictor , suggesting that this sequence originated in the genome of a common ancestor of Pythonidae and Boidae, approximately 86 million years ago. The three stDNA sequences showed no genomic compartmentalization between the macrochromosomes and microchromosomes, suggesting that homogenization of the centromeric and/or pericentromeric stDNA sequences occurred in the macrochromosomes and microchromosomes of these snakes.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><pmid>26205503</pmid><doi>10.1007/s00412-015-0529-6</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0009-5915
ispartof Chromosoma, 2015-12, Vol.124 (4), p.529-539
issn 0009-5915
1432-0886
language eng
recordid cdi_proquest_miscellaneous_1751229004
source MEDLINE; SpringerLink Journals - AutoHoldings
subjects Animal Genetics and Genomics
Animals
Base Sequence
Biochemistry
Biomedical and Life Sciences
Boa constrictor
Boidae
Boidae - genetics
Cell Biology
Cloning, Molecular
Crotalinae
Developmental Biology
DNA, Satellite - chemistry
Eukaryotic Microbiology
Evolution, Molecular
Heterochromatin
Human Genetics
In Situ Hybridization, Fluorescence
Karyotype
Life Sciences
Molecular Sequence Data
Original Article
Python molurus
Sequence Analysis, DNA
Trimeresurus - genetics
Viperidae
title Molecular cloning and characterization of satellite DNA sequences from constitutive heterochromatin of the habu snake (Protobothrops flavoviridis, Viperidae) and the Burmese python (Python bivittatus, Pythonidae)
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T20%3A33%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Molecular%20cloning%20and%20characterization%20of%20satellite%20DNA%20sequences%20from%20constitutive%20heterochromatin%20of%20the%20habu%20snake%20(Protobothrops%20flavoviridis,%20Viperidae)%20and%20the%20Burmese%20python%20(Python%20bivittatus,%20Pythonidae)&rft.jtitle=Chromosoma&rft.au=Matsubara,%20Kazumi&rft.date=2015-12-01&rft.volume=124&rft.issue=4&rft.spage=529&rft.epage=539&rft.pages=529-539&rft.issn=0009-5915&rft.eissn=1432-0886&rft_id=info:doi/10.1007/s00412-015-0529-6&rft_dat=%3Cproquest_cross%3E1751229004%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1749612149&rft_id=info:pmid/26205503&rfr_iscdi=true