Ocean versus atmosphere control on western European wintertime temperature variability
Using a novel Lagrangian approach, we assess the relative roles of the atmosphere and ocean in setting interannual variability in western European wintertime temperatures. We compute sensible and latent heat fluxes along atmospheric particle trajectories backtracked in time from four western Europea...
Gespeichert in:
Veröffentlicht in: | Climate dynamics 2015-12, Vol.45 (11-12), p.3593-3607 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3607 |
---|---|
container_issue | 11-12 |
container_start_page | 3593 |
container_title | Climate dynamics |
container_volume | 45 |
creator | Yamamoto, Ayako Palter, Jaime B. Lozier, M. Susan Bourqui, Michel S. Leadbetter, Susan J. |
description | Using a novel Lagrangian approach, we assess the relative roles of the atmosphere and ocean in setting interannual variability in western European wintertime temperatures. We compute sensible and latent heat fluxes along atmospheric particle trajectories backtracked in time from four western European cities, using a Lagrangian atmospheric dispersion model driven with meteorological reanalysis data. The material time rate of change in potential temperature and the surface turbulent fluxes computed along the trajectory show a high degree of correlation, revealing a dominant control of ocean–atmosphere heat and moisture exchange in setting heat flux variability for atmospheric particles en route to western Europe. We conduct six idealised simulations in which one or more aspects of the climate system is held constant at climatological values and these idealised simulations are compared with a control simulation, in which all components of the climate system vary realistically. The results from these idealised simulations suggest that knowledge of atmospheric pathways is essential for reconstructing the interannual variability in heat flux and western European wintertime temperature, and that variability in these trajectories alone is sufficient to explain at least half of the internannual flux variability. Our idealised simulations also expose an important role for sea surface temperature in setting decadal scale variability of air–sea heat fluxes along the Lagrangian pathways. These results are consistent with previous studies showing that air–sea heat flux variability is driven by the atmosphere on interannual time scales over much of the North Atlantic, whereas the SST plays a leading role on longer time scales. Of particular interest is that the atmospheric control holds for the integrated fluxes along 10-day back trajectories from western Europe on an interannual time scale, despite that many of these trajectories pass over the Gulf Stream and its North Atlantic Current extension, regions where ocean dynamics influence air–sea heat exchange even on a very short time scale. |
doi_str_mv | 10.1007/s00382-015-2558-5 |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_1751228404</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A435129843</galeid><sourcerecordid>A435129843</sourcerecordid><originalsourceid>FETCH-LOGICAL-c543t-a376e1d674565b25d324452769e2b4bbe5588d5cb88de5e1b951123d6dfe90083</originalsourceid><addsrcrecordid>eNp9kl9r1jAUxoMo-Dr9AF5ZEEQvOvO3aS_HmDoYDJzzNqTt6ftmtElN0s19e0-pF3u9kEACD7_ncM55QshbRk8ZpfpzolTUvKRMlVypulTPyI5JgUrdyOdkRxtBS620eklepXRHKZOV5jvy87oD64t7iGlJhc1TSPMBIhRd8DmGsQi-eICUIfriYolhXukH51HIboIiwzRDtHlBy72NzrZudPnxNXkx2DHBm7_vCbn9cvHj_Ft5df318vzsquyUFLm0QlfA-kpLVamWq15wKRXXVQO8lW0LOErdq67FGxSwtlGMcdFX_QANpbU4IR-3unMMvxbs00wudTCO1kNYkmFaMc5rSSWi7_9B78ISPXaHlJAVZUxRpE43am9HMM4PIUfb4elhcrgTGBzqZ1Jg3aaWAg2fjgzr3uB33tslJXN58_2Y_fCEPYAd8yGFccku-HQMsg3sYkgpwmDm6CYbHw2jZs3bbHkbzNuseRuFHr55ErJ-D_HJfP8xvdtMgw3G7qNL5vaGU1atH6QWWoo_10G0jw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1734601150</pqid></control><display><type>article</type><title>Ocean versus atmosphere control on western European wintertime temperature variability</title><source>SpringerLink Journals - AutoHoldings</source><creator>Yamamoto, Ayako ; Palter, Jaime B. ; Lozier, M. Susan ; Bourqui, Michel S. ; Leadbetter, Susan J.</creator><creatorcontrib>Yamamoto, Ayako ; Palter, Jaime B. ; Lozier, M. Susan ; Bourqui, Michel S. ; Leadbetter, Susan J.</creatorcontrib><description>Using a novel Lagrangian approach, we assess the relative roles of the atmosphere and ocean in setting interannual variability in western European wintertime temperatures. We compute sensible and latent heat fluxes along atmospheric particle trajectories backtracked in time from four western European cities, using a Lagrangian atmospheric dispersion model driven with meteorological reanalysis data. The material time rate of change in potential temperature and the surface turbulent fluxes computed along the trajectory show a high degree of correlation, revealing a dominant control of ocean–atmosphere heat and moisture exchange in setting heat flux variability for atmospheric particles en route to western Europe. We conduct six idealised simulations in which one or more aspects of the climate system is held constant at climatological values and these idealised simulations are compared with a control simulation, in which all components of the climate system vary realistically. The results from these idealised simulations suggest that knowledge of atmospheric pathways is essential for reconstructing the interannual variability in heat flux and western European wintertime temperature, and that variability in these trajectories alone is sufficient to explain at least half of the internannual flux variability. Our idealised simulations also expose an important role for sea surface temperature in setting decadal scale variability of air–sea heat fluxes along the Lagrangian pathways. These results are consistent with previous studies showing that air–sea heat flux variability is driven by the atmosphere on interannual time scales over much of the North Atlantic, whereas the SST plays a leading role on longer time scales. Of particular interest is that the atmospheric control holds for the integrated fluxes along 10-day back trajectories from western Europe on an interannual time scale, despite that many of these trajectories pass over the Gulf Stream and its North Atlantic Current extension, regions where ocean dynamics influence air–sea heat exchange even on a very short time scale.</description><identifier>ISSN: 0930-7575</identifier><identifier>EISSN: 1432-0894</identifier><identifier>DOI: 10.1007/s00382-015-2558-5</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Aerosols ; Analysis ; Atmosphere ; Atmospheric models ; Climate change ; Climate system ; Climatology ; Earth and Environmental Science ; Earth Sciences ; Fluctuations ; Geophysics/Geodesy ; Heat exchange ; Latent heat ; Marine ; Ocean temperature ; Ocean-atmosphere interaction ; Oceanography ; Pollution dispersion ; Precipitation variability ; Sea surface temperature ; Temperature ; Variability ; Winter</subject><ispartof>Climate dynamics, 2015-12, Vol.45 (11-12), p.3593-3607</ispartof><rights>Springer-Verlag Berlin Heidelberg 2015</rights><rights>COPYRIGHT 2015 Springer</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c543t-a376e1d674565b25d324452769e2b4bbe5588d5cb88de5e1b951123d6dfe90083</citedby><cites>FETCH-LOGICAL-c543t-a376e1d674565b25d324452769e2b4bbe5588d5cb88de5e1b951123d6dfe90083</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00382-015-2558-5$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00382-015-2558-5$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Yamamoto, Ayako</creatorcontrib><creatorcontrib>Palter, Jaime B.</creatorcontrib><creatorcontrib>Lozier, M. Susan</creatorcontrib><creatorcontrib>Bourqui, Michel S.</creatorcontrib><creatorcontrib>Leadbetter, Susan J.</creatorcontrib><title>Ocean versus atmosphere control on western European wintertime temperature variability</title><title>Climate dynamics</title><addtitle>Clim Dyn</addtitle><description>Using a novel Lagrangian approach, we assess the relative roles of the atmosphere and ocean in setting interannual variability in western European wintertime temperatures. We compute sensible and latent heat fluxes along atmospheric particle trajectories backtracked in time from four western European cities, using a Lagrangian atmospheric dispersion model driven with meteorological reanalysis data. The material time rate of change in potential temperature and the surface turbulent fluxes computed along the trajectory show a high degree of correlation, revealing a dominant control of ocean–atmosphere heat and moisture exchange in setting heat flux variability for atmospheric particles en route to western Europe. We conduct six idealised simulations in which one or more aspects of the climate system is held constant at climatological values and these idealised simulations are compared with a control simulation, in which all components of the climate system vary realistically. The results from these idealised simulations suggest that knowledge of atmospheric pathways is essential for reconstructing the interannual variability in heat flux and western European wintertime temperature, and that variability in these trajectories alone is sufficient to explain at least half of the internannual flux variability. Our idealised simulations also expose an important role for sea surface temperature in setting decadal scale variability of air–sea heat fluxes along the Lagrangian pathways. These results are consistent with previous studies showing that air–sea heat flux variability is driven by the atmosphere on interannual time scales over much of the North Atlantic, whereas the SST plays a leading role on longer time scales. Of particular interest is that the atmospheric control holds for the integrated fluxes along 10-day back trajectories from western Europe on an interannual time scale, despite that many of these trajectories pass over the Gulf Stream and its North Atlantic Current extension, regions where ocean dynamics influence air–sea heat exchange even on a very short time scale.</description><subject>Aerosols</subject><subject>Analysis</subject><subject>Atmosphere</subject><subject>Atmospheric models</subject><subject>Climate change</subject><subject>Climate system</subject><subject>Climatology</subject><subject>Earth and Environmental Science</subject><subject>Earth Sciences</subject><subject>Fluctuations</subject><subject>Geophysics/Geodesy</subject><subject>Heat exchange</subject><subject>Latent heat</subject><subject>Marine</subject><subject>Ocean temperature</subject><subject>Ocean-atmosphere interaction</subject><subject>Oceanography</subject><subject>Pollution dispersion</subject><subject>Precipitation variability</subject><subject>Sea surface temperature</subject><subject>Temperature</subject><subject>Variability</subject><subject>Winter</subject><issn>0930-7575</issn><issn>1432-0894</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp9kl9r1jAUxoMo-Dr9AF5ZEEQvOvO3aS_HmDoYDJzzNqTt6ftmtElN0s19e0-pF3u9kEACD7_ncM55QshbRk8ZpfpzolTUvKRMlVypulTPyI5JgUrdyOdkRxtBS620eklepXRHKZOV5jvy87oD64t7iGlJhc1TSPMBIhRd8DmGsQi-eICUIfriYolhXukH51HIboIiwzRDtHlBy72NzrZudPnxNXkx2DHBm7_vCbn9cvHj_Ft5df318vzsquyUFLm0QlfA-kpLVamWq15wKRXXVQO8lW0LOErdq67FGxSwtlGMcdFX_QANpbU4IR-3unMMvxbs00wudTCO1kNYkmFaMc5rSSWi7_9B78ISPXaHlJAVZUxRpE43am9HMM4PIUfb4elhcrgTGBzqZ1Jg3aaWAg2fjgzr3uB33tslJXN58_2Y_fCEPYAd8yGFccku-HQMsg3sYkgpwmDm6CYbHw2jZs3bbHkbzNuseRuFHr55ErJ-D_HJfP8xvdtMgw3G7qNL5vaGU1atH6QWWoo_10G0jw</recordid><startdate>20151201</startdate><enddate>20151201</enddate><creator>Yamamoto, Ayako</creator><creator>Palter, Jaime B.</creator><creator>Lozier, M. Susan</creator><creator>Bourqui, Michel S.</creator><creator>Leadbetter, Susan J.</creator><general>Springer Berlin Heidelberg</general><general>Springer</general><general>Springer Nature B.V</general><scope>FBQ</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>3V.</scope><scope>7TG</scope><scope>7TN</scope><scope>7UA</scope><scope>7XB</scope><scope>88F</scope><scope>88I</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>GNUQQ</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KL.</scope><scope>L.G</scope><scope>M1Q</scope><scope>M2P</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope><scope>Q9U</scope></search><sort><creationdate>20151201</creationdate><title>Ocean versus atmosphere control on western European wintertime temperature variability</title><author>Yamamoto, Ayako ; Palter, Jaime B. ; Lozier, M. Susan ; Bourqui, Michel S. ; Leadbetter, Susan J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c543t-a376e1d674565b25d324452769e2b4bbe5588d5cb88de5e1b951123d6dfe90083</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Aerosols</topic><topic>Analysis</topic><topic>Atmosphere</topic><topic>Atmospheric models</topic><topic>Climate change</topic><topic>Climate system</topic><topic>Climatology</topic><topic>Earth and Environmental Science</topic><topic>Earth Sciences</topic><topic>Fluctuations</topic><topic>Geophysics/Geodesy</topic><topic>Heat exchange</topic><topic>Latent heat</topic><topic>Marine</topic><topic>Ocean temperature</topic><topic>Ocean-atmosphere interaction</topic><topic>Oceanography</topic><topic>Pollution dispersion</topic><topic>Precipitation variability</topic><topic>Sea surface temperature</topic><topic>Temperature</topic><topic>Variability</topic><topic>Winter</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yamamoto, Ayako</creatorcontrib><creatorcontrib>Palter, Jaime B.</creatorcontrib><creatorcontrib>Lozier, M. Susan</creatorcontrib><creatorcontrib>Bourqui, Michel S.</creatorcontrib><creatorcontrib>Leadbetter, Susan J.</creatorcontrib><collection>AGRIS</collection><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Oceanic Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Military Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>ProQuest Central Student</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Military Database</collection><collection>Science Database</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Climate dynamics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yamamoto, Ayako</au><au>Palter, Jaime B.</au><au>Lozier, M. Susan</au><au>Bourqui, Michel S.</au><au>Leadbetter, Susan J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Ocean versus atmosphere control on western European wintertime temperature variability</atitle><jtitle>Climate dynamics</jtitle><stitle>Clim Dyn</stitle><date>2015-12-01</date><risdate>2015</risdate><volume>45</volume><issue>11-12</issue><spage>3593</spage><epage>3607</epage><pages>3593-3607</pages><issn>0930-7575</issn><eissn>1432-0894</eissn><abstract>Using a novel Lagrangian approach, we assess the relative roles of the atmosphere and ocean in setting interannual variability in western European wintertime temperatures. We compute sensible and latent heat fluxes along atmospheric particle trajectories backtracked in time from four western European cities, using a Lagrangian atmospheric dispersion model driven with meteorological reanalysis data. The material time rate of change in potential temperature and the surface turbulent fluxes computed along the trajectory show a high degree of correlation, revealing a dominant control of ocean–atmosphere heat and moisture exchange in setting heat flux variability for atmospheric particles en route to western Europe. We conduct six idealised simulations in which one or more aspects of the climate system is held constant at climatological values and these idealised simulations are compared with a control simulation, in which all components of the climate system vary realistically. The results from these idealised simulations suggest that knowledge of atmospheric pathways is essential for reconstructing the interannual variability in heat flux and western European wintertime temperature, and that variability in these trajectories alone is sufficient to explain at least half of the internannual flux variability. Our idealised simulations also expose an important role for sea surface temperature in setting decadal scale variability of air–sea heat fluxes along the Lagrangian pathways. These results are consistent with previous studies showing that air–sea heat flux variability is driven by the atmosphere on interannual time scales over much of the North Atlantic, whereas the SST plays a leading role on longer time scales. Of particular interest is that the atmospheric control holds for the integrated fluxes along 10-day back trajectories from western Europe on an interannual time scale, despite that many of these trajectories pass over the Gulf Stream and its North Atlantic Current extension, regions where ocean dynamics influence air–sea heat exchange even on a very short time scale.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00382-015-2558-5</doi><tpages>15</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0930-7575 |
ispartof | Climate dynamics, 2015-12, Vol.45 (11-12), p.3593-3607 |
issn | 0930-7575 1432-0894 |
language | eng |
recordid | cdi_proquest_miscellaneous_1751228404 |
source | SpringerLink Journals - AutoHoldings |
subjects | Aerosols Analysis Atmosphere Atmospheric models Climate change Climate system Climatology Earth and Environmental Science Earth Sciences Fluctuations Geophysics/Geodesy Heat exchange Latent heat Marine Ocean temperature Ocean-atmosphere interaction Oceanography Pollution dispersion Precipitation variability Sea surface temperature Temperature Variability Winter |
title | Ocean versus atmosphere control on western European wintertime temperature variability |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T16%3A40%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Ocean%20versus%20atmosphere%20control%20on%20western%20European%20wintertime%20temperature%20variability&rft.jtitle=Climate%20dynamics&rft.au=Yamamoto,%20Ayako&rft.date=2015-12-01&rft.volume=45&rft.issue=11-12&rft.spage=3593&rft.epage=3607&rft.pages=3593-3607&rft.issn=0930-7575&rft.eissn=1432-0894&rft_id=info:doi/10.1007/s00382-015-2558-5&rft_dat=%3Cgale_proqu%3EA435129843%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1734601150&rft_id=info:pmid/&rft_galeid=A435129843&rfr_iscdi=true |