Evidence for glycinergic GluN1/GluN3 NMDA receptors in hippocampal metaplasticity
•Chronic LTP stimulation induces metaplasticity termed LTP-induced depotentiation.•GluN3 subunits of NMDA receptors are required for this form of plasticity.•GluN3B is recruited selectively to large synapses following LTP.•GluN3/GluN1 entirely glycinergic receptors are implicated in this mechanism....
Gespeichert in:
Veröffentlicht in: | Neurobiology of learning and memory 2015-11, Vol.125, p.265-273 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 273 |
---|---|
container_issue | |
container_start_page | 265 |
container_title | Neurobiology of learning and memory |
container_volume | 125 |
creator | Rozeboom, Aaron M. Queenan, Bridget N. Partridge, John G. Farnham, Christina Wu, Jian-young Vicini, Stefano Pak, Daniel T.S. |
description | •Chronic LTP stimulation induces metaplasticity termed LTP-induced depotentiation.•GluN3 subunits of NMDA receptors are required for this form of plasticity.•GluN3B is recruited selectively to large synapses following LTP.•GluN3/GluN1 entirely glycinergic receptors are implicated in this mechanism.
Hebbian, or associative, forms of synaptic plasticity are considered the molecular basis of learning and memory. However, associative synaptic modifications, including long-term potentiation (LTP) and depression (LTD), can form positive feedback loops which must be constrained for neural networks to remain stable. One proposed constraint mechanism is metaplasticity, a process whereby synaptic changes shift the threshold for subsequent plasticity. Metaplasticity has been functionally observed but the molecular basis is not well understood. Here, we report that stimulation which induces LTP recruits GluN2B-lacking GluN1/GluN3 NMDA receptors (NMDARs) to excitatory synapses of hippocampal pyramidal neurons. These unconventional receptors may compete against conventional GluN1/GluN2 NMDARs to favor synaptic depotentiation in response to subsequent “LTP-inducing” stimulation. These results implicate glycinergic GluN1/GluN3 NMDAR as molecular brakes on excessive synaptic strengthening, suggesting a role for these receptors in the brain that has previously been elusive. |
doi_str_mv | 10.1016/j.nlm.2015.10.005 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1751211150</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1074742715001859</els_id><sourcerecordid>3897443901</sourcerecordid><originalsourceid>FETCH-LOGICAL-c414t-2b28655ee8c203a232a1ad6eb3d5471f1a175b8038ec4ed8f3443eee852917d83</originalsourceid><addsrcrecordid>eNqNkUlLxTAUhYMozj_AjRTcuOkzN0PT4kqcwQFB1yEvvdU8Opm0wvv3pjx14ULcJLnhOwfuOYQcAJ0BhexkMWvrZsYoyDjPKJVrZBtoIdNCZmJ9eiuRKsHUFtkJYUEpgCzyTbLFMqFUzsU2ebr8cCW2FpOq88lrvbSuRf_qbHJdjw9wMp08ebi_OEs8WuyHzofEtcmb6_vOmqY3ddLgYPrahMFZNyz3yEZl6oD7X_cuebm6fD6_Se8er2_Pz-5SK0AMKZuzPJMSMbeMcsM4M2DKDOe8lEJBBQaUnOeU52gFlnnFheAYcckKUGXOd8nxyrf33fuIYdCNCxbr2rTYjUFHOTCIG9N_oJwXrGBCRfToF7roRt_GRSIlikzwGGekYEVZ34XgsdK9d43xSw1UT9XohY7V6Kma6StWEzWHX87jvMHyR_HdRQROVwDG1D4ceh2sm6opXYx-0GXn_rD_BBTInIQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1749643427</pqid></control><display><type>article</type><title>Evidence for glycinergic GluN1/GluN3 NMDA receptors in hippocampal metaplasticity</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>Rozeboom, Aaron M. ; Queenan, Bridget N. ; Partridge, John G. ; Farnham, Christina ; Wu, Jian-young ; Vicini, Stefano ; Pak, Daniel T.S.</creator><creatorcontrib>Rozeboom, Aaron M. ; Queenan, Bridget N. ; Partridge, John G. ; Farnham, Christina ; Wu, Jian-young ; Vicini, Stefano ; Pak, Daniel T.S.</creatorcontrib><description>•Chronic LTP stimulation induces metaplasticity termed LTP-induced depotentiation.•GluN3 subunits of NMDA receptors are required for this form of plasticity.•GluN3B is recruited selectively to large synapses following LTP.•GluN3/GluN1 entirely glycinergic receptors are implicated in this mechanism.
Hebbian, or associative, forms of synaptic plasticity are considered the molecular basis of learning and memory. However, associative synaptic modifications, including long-term potentiation (LTP) and depression (LTD), can form positive feedback loops which must be constrained for neural networks to remain stable. One proposed constraint mechanism is metaplasticity, a process whereby synaptic changes shift the threshold for subsequent plasticity. Metaplasticity has been functionally observed but the molecular basis is not well understood. Here, we report that stimulation which induces LTP recruits GluN2B-lacking GluN1/GluN3 NMDA receptors (NMDARs) to excitatory synapses of hippocampal pyramidal neurons. These unconventional receptors may compete against conventional GluN1/GluN2 NMDARs to favor synaptic depotentiation in response to subsequent “LTP-inducing” stimulation. These results implicate glycinergic GluN1/GluN3 NMDAR as molecular brakes on excessive synaptic strengthening, suggesting a role for these receptors in the brain that has previously been elusive.</description><identifier>ISSN: 1074-7427</identifier><identifier>EISSN: 1095-9564</identifier><identifier>DOI: 10.1016/j.nlm.2015.10.005</identifier><identifier>PMID: 26477834</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Animals ; Excitatory Postsynaptic Potentials - physiology ; GluN3 ; Glycinergic ; Hippocampus - physiology ; LID ; Long-Term Potentiation - physiology ; LTP ; Metaplasticity ; Mice ; Nerve Tissue Proteins - metabolism ; Neuronal Plasticity - physiology ; NMDA receptor ; Rats ; Receptors, N-Methyl-D-Aspartate - metabolism ; Synapses - metabolism</subject><ispartof>Neurobiology of learning and memory, 2015-11, Vol.125, p.265-273</ispartof><rights>2015 Elsevier Inc.</rights><rights>Copyright © 2015 Elsevier Inc. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c414t-2b28655ee8c203a232a1ad6eb3d5471f1a175b8038ec4ed8f3443eee852917d83</citedby><cites>FETCH-LOGICAL-c414t-2b28655ee8c203a232a1ad6eb3d5471f1a175b8038ec4ed8f3443eee852917d83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S1074742715001859$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27903,27904,65309</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26477834$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Rozeboom, Aaron M.</creatorcontrib><creatorcontrib>Queenan, Bridget N.</creatorcontrib><creatorcontrib>Partridge, John G.</creatorcontrib><creatorcontrib>Farnham, Christina</creatorcontrib><creatorcontrib>Wu, Jian-young</creatorcontrib><creatorcontrib>Vicini, Stefano</creatorcontrib><creatorcontrib>Pak, Daniel T.S.</creatorcontrib><title>Evidence for glycinergic GluN1/GluN3 NMDA receptors in hippocampal metaplasticity</title><title>Neurobiology of learning and memory</title><addtitle>Neurobiol Learn Mem</addtitle><description>•Chronic LTP stimulation induces metaplasticity termed LTP-induced depotentiation.•GluN3 subunits of NMDA receptors are required for this form of plasticity.•GluN3B is recruited selectively to large synapses following LTP.•GluN3/GluN1 entirely glycinergic receptors are implicated in this mechanism.
Hebbian, or associative, forms of synaptic plasticity are considered the molecular basis of learning and memory. However, associative synaptic modifications, including long-term potentiation (LTP) and depression (LTD), can form positive feedback loops which must be constrained for neural networks to remain stable. One proposed constraint mechanism is metaplasticity, a process whereby synaptic changes shift the threshold for subsequent plasticity. Metaplasticity has been functionally observed but the molecular basis is not well understood. Here, we report that stimulation which induces LTP recruits GluN2B-lacking GluN1/GluN3 NMDA receptors (NMDARs) to excitatory synapses of hippocampal pyramidal neurons. These unconventional receptors may compete against conventional GluN1/GluN2 NMDARs to favor synaptic depotentiation in response to subsequent “LTP-inducing” stimulation. These results implicate glycinergic GluN1/GluN3 NMDAR as molecular brakes on excessive synaptic strengthening, suggesting a role for these receptors in the brain that has previously been elusive.</description><subject>Animals</subject><subject>Excitatory Postsynaptic Potentials - physiology</subject><subject>GluN3</subject><subject>Glycinergic</subject><subject>Hippocampus - physiology</subject><subject>LID</subject><subject>Long-Term Potentiation - physiology</subject><subject>LTP</subject><subject>Metaplasticity</subject><subject>Mice</subject><subject>Nerve Tissue Proteins - metabolism</subject><subject>Neuronal Plasticity - physiology</subject><subject>NMDA receptor</subject><subject>Rats</subject><subject>Receptors, N-Methyl-D-Aspartate - metabolism</subject><subject>Synapses - metabolism</subject><issn>1074-7427</issn><issn>1095-9564</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkUlLxTAUhYMozj_AjRTcuOkzN0PT4kqcwQFB1yEvvdU8Opm0wvv3pjx14ULcJLnhOwfuOYQcAJ0BhexkMWvrZsYoyDjPKJVrZBtoIdNCZmJ9eiuRKsHUFtkJYUEpgCzyTbLFMqFUzsU2ebr8cCW2FpOq88lrvbSuRf_qbHJdjw9wMp08ebi_OEs8WuyHzofEtcmb6_vOmqY3ddLgYPrahMFZNyz3yEZl6oD7X_cuebm6fD6_Se8er2_Pz-5SK0AMKZuzPJMSMbeMcsM4M2DKDOe8lEJBBQaUnOeU52gFlnnFheAYcckKUGXOd8nxyrf33fuIYdCNCxbr2rTYjUFHOTCIG9N_oJwXrGBCRfToF7roRt_GRSIlikzwGGekYEVZ34XgsdK9d43xSw1UT9XohY7V6Kma6StWEzWHX87jvMHyR_HdRQROVwDG1D4ceh2sm6opXYx-0GXn_rD_BBTInIQ</recordid><startdate>201511</startdate><enddate>201511</enddate><creator>Rozeboom, Aaron M.</creator><creator>Queenan, Bridget N.</creator><creator>Partridge, John G.</creator><creator>Farnham, Christina</creator><creator>Wu, Jian-young</creator><creator>Vicini, Stefano</creator><creator>Pak, Daniel T.S.</creator><general>Elsevier Inc</general><general>Elsevier BV</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QR</scope><scope>7TK</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>7X8</scope></search><sort><creationdate>201511</creationdate><title>Evidence for glycinergic GluN1/GluN3 NMDA receptors in hippocampal metaplasticity</title><author>Rozeboom, Aaron M. ; Queenan, Bridget N. ; Partridge, John G. ; Farnham, Christina ; Wu, Jian-young ; Vicini, Stefano ; Pak, Daniel T.S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c414t-2b28655ee8c203a232a1ad6eb3d5471f1a175b8038ec4ed8f3443eee852917d83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Animals</topic><topic>Excitatory Postsynaptic Potentials - physiology</topic><topic>GluN3</topic><topic>Glycinergic</topic><topic>Hippocampus - physiology</topic><topic>LID</topic><topic>Long-Term Potentiation - physiology</topic><topic>LTP</topic><topic>Metaplasticity</topic><topic>Mice</topic><topic>Nerve Tissue Proteins - metabolism</topic><topic>Neuronal Plasticity - physiology</topic><topic>NMDA receptor</topic><topic>Rats</topic><topic>Receptors, N-Methyl-D-Aspartate - metabolism</topic><topic>Synapses - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rozeboom, Aaron M.</creatorcontrib><creatorcontrib>Queenan, Bridget N.</creatorcontrib><creatorcontrib>Partridge, John G.</creatorcontrib><creatorcontrib>Farnham, Christina</creatorcontrib><creatorcontrib>Wu, Jian-young</creatorcontrib><creatorcontrib>Vicini, Stefano</creatorcontrib><creatorcontrib>Pak, Daniel T.S.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Neurobiology of learning and memory</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rozeboom, Aaron M.</au><au>Queenan, Bridget N.</au><au>Partridge, John G.</au><au>Farnham, Christina</au><au>Wu, Jian-young</au><au>Vicini, Stefano</au><au>Pak, Daniel T.S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Evidence for glycinergic GluN1/GluN3 NMDA receptors in hippocampal metaplasticity</atitle><jtitle>Neurobiology of learning and memory</jtitle><addtitle>Neurobiol Learn Mem</addtitle><date>2015-11</date><risdate>2015</risdate><volume>125</volume><spage>265</spage><epage>273</epage><pages>265-273</pages><issn>1074-7427</issn><eissn>1095-9564</eissn><abstract>•Chronic LTP stimulation induces metaplasticity termed LTP-induced depotentiation.•GluN3 subunits of NMDA receptors are required for this form of plasticity.•GluN3B is recruited selectively to large synapses following LTP.•GluN3/GluN1 entirely glycinergic receptors are implicated in this mechanism.
Hebbian, or associative, forms of synaptic plasticity are considered the molecular basis of learning and memory. However, associative synaptic modifications, including long-term potentiation (LTP) and depression (LTD), can form positive feedback loops which must be constrained for neural networks to remain stable. One proposed constraint mechanism is metaplasticity, a process whereby synaptic changes shift the threshold for subsequent plasticity. Metaplasticity has been functionally observed but the molecular basis is not well understood. Here, we report that stimulation which induces LTP recruits GluN2B-lacking GluN1/GluN3 NMDA receptors (NMDARs) to excitatory synapses of hippocampal pyramidal neurons. These unconventional receptors may compete against conventional GluN1/GluN2 NMDARs to favor synaptic depotentiation in response to subsequent “LTP-inducing” stimulation. These results implicate glycinergic GluN1/GluN3 NMDAR as molecular brakes on excessive synaptic strengthening, suggesting a role for these receptors in the brain that has previously been elusive.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>26477834</pmid><doi>10.1016/j.nlm.2015.10.005</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1074-7427 |
ispartof | Neurobiology of learning and memory, 2015-11, Vol.125, p.265-273 |
issn | 1074-7427 1095-9564 |
language | eng |
recordid | cdi_proquest_miscellaneous_1751211150 |
source | MEDLINE; Elsevier ScienceDirect Journals |
subjects | Animals Excitatory Postsynaptic Potentials - physiology GluN3 Glycinergic Hippocampus - physiology LID Long-Term Potentiation - physiology LTP Metaplasticity Mice Nerve Tissue Proteins - metabolism Neuronal Plasticity - physiology NMDA receptor Rats Receptors, N-Methyl-D-Aspartate - metabolism Synapses - metabolism |
title | Evidence for glycinergic GluN1/GluN3 NMDA receptors in hippocampal metaplasticity |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T11%3A02%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Evidence%20for%20glycinergic%20GluN1/GluN3%20NMDA%20receptors%20in%20hippocampal%20metaplasticity&rft.jtitle=Neurobiology%20of%20learning%20and%20memory&rft.au=Rozeboom,%20Aaron%20M.&rft.date=2015-11&rft.volume=125&rft.spage=265&rft.epage=273&rft.pages=265-273&rft.issn=1074-7427&rft.eissn=1095-9564&rft_id=info:doi/10.1016/j.nlm.2015.10.005&rft_dat=%3Cproquest_cross%3E3897443901%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1749643427&rft_id=info:pmid/26477834&rft_els_id=S1074742715001859&rfr_iscdi=true |