A new method for modeling the heterogeneity of forest structure
Despite the critical ecological roles of structural complexity, ecologically relevant quantitative measures of structural complexity that allow comparisons among forest stands are still lacking. The objective of this study was to develop a method that allows comparisons of structural heterogeneity a...
Gespeichert in:
Veröffentlicht in: | Forest ecology and management 2000-04, Vol.129 (1), p.75-87 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 87 |
---|---|
container_issue | 1 |
container_start_page | 75 |
container_title | Forest ecology and management |
container_volume | 129 |
creator | Zenner, Eric K Hibbs, David E |
description | Despite the critical ecological roles of structural complexity, ecologically relevant quantitative measures of structural complexity that allow comparisons among forest stands are still lacking. The objective of this study was to develop a method that allows comparisons of structural heterogeneity among stands. To encompass a broad range of potential structural complexities, we simulated three spatial point patterns each for tree-size distributions from five inventoried natural stands. Forest structure was modeled and analyzed by simulating point patterns of trees and constructing triangular networks to connect neighboring tree tops to one another. This method is based on the concept of spatial tessellation of tree positions, where point patterns are converted into 2-dimensional nearest neighbor triangles. A structural complexity index (SCI) was defined as the sum of the areas of 3-dimensional triangles (with
x,
y, and
z coordinates) divided by the sum of the areas of 2-dimensional triangles. Vertical gradients were defined as the maximum size difference among the trees forming a triangle, that is, the greater the difference, the greater the structure and the larger the SCI value. Patch-types were defined as classes of structural gradients at different positions within the canopy. More patch-types are also indicative of more structurally heterogeneous stands. Both the SCI and the number of patch-types and patch-size heterogeneity related closely to conventional descriptors of forest structure. While the number of patch-types and patch-type heterogeneity related more to the vertical component of structural complexity, SCI integrated well with both the vertical and horizontal structure. SCI and the concept of patch-types complement one another and can be used to quantitatively compare the structure of different stands. The applicability of this modeling approach in characterizing the structural heterogeneity of forests across spatial scales is discussed. |
doi_str_mv | 10.1016/S0378-1127(99)00140-1 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_17507345</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0378112799001401</els_id><sourcerecordid>17507345</sourcerecordid><originalsourceid>FETCH-LOGICAL-c391t-f9a1ecfe2ed3443705ec4cc4f7fc9ce5271fc0a83ff686565541db192ab50ad13</originalsourceid><addsrcrecordid>eNqFkE1LAzEQhoMoWD9-grgHET2sTrLJZnMSEb-g4EE9hzQ7aSPbjSap0n_v1hY9eprDPDPvy0PIEYULCrS-fIZKNiWlTJ4pdQ5AOZR0i4xoI1kpgbNtMvpFdsleSm8AIARvRuTquujxq5hjnoW2cCEW89Bi5_tpkWdYzDBjDFPs0edlEdyKwJSLlOPC5kXEA7LjTJfwcDP3yevd7cvNQzl-un-8uR6XtlI0l04ZitYhw7bivJIg0HJruZPOKouCSeosmKZyrm5qUQ_laDuhipmJANPSap-crv--x_CxGCrouU8Wu870GBZJUylAVlwMoFiDNoaUIjr9Hv3cxKWmoFe69I8uvXKhldI_uvQq4GQTYJI1nYumtz79HVcAkrMBO15jzgRtpnFAXp8ZDGumuKprNRBXawIHHZ8eo07WY2-x9RFt1m3w_1T5Bo9uh-Y</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>17507345</pqid></control><display><type>article</type><title>A new method for modeling the heterogeneity of forest structure</title><source>Access via ScienceDirect (Elsevier)</source><creator>Zenner, Eric K ; Hibbs, David E</creator><creatorcontrib>Zenner, Eric K ; Hibbs, David E</creatorcontrib><description>Despite the critical ecological roles of structural complexity, ecologically relevant quantitative measures of structural complexity that allow comparisons among forest stands are still lacking. The objective of this study was to develop a method that allows comparisons of structural heterogeneity among stands. To encompass a broad range of potential structural complexities, we simulated three spatial point patterns each for tree-size distributions from five inventoried natural stands. Forest structure was modeled and analyzed by simulating point patterns of trees and constructing triangular networks to connect neighboring tree tops to one another. This method is based on the concept of spatial tessellation of tree positions, where point patterns are converted into 2-dimensional nearest neighbor triangles. A structural complexity index (SCI) was defined as the sum of the areas of 3-dimensional triangles (with
x,
y, and
z coordinates) divided by the sum of the areas of 2-dimensional triangles. Vertical gradients were defined as the maximum size difference among the trees forming a triangle, that is, the greater the difference, the greater the structure and the larger the SCI value. Patch-types were defined as classes of structural gradients at different positions within the canopy. More patch-types are also indicative of more structurally heterogeneous stands. Both the SCI and the number of patch-types and patch-size heterogeneity related closely to conventional descriptors of forest structure. While the number of patch-types and patch-type heterogeneity related more to the vertical component of structural complexity, SCI integrated well with both the vertical and horizontal structure. SCI and the concept of patch-types complement one another and can be used to quantitatively compare the structure of different stands. The applicability of this modeling approach in characterizing the structural heterogeneity of forests across spatial scales is discussed.</description><identifier>ISSN: 0378-1127</identifier><identifier>EISSN: 1872-7042</identifier><identifier>DOI: 10.1016/S0378-1127(99)00140-1</identifier><identifier>CODEN: FECMDW</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>area ; basal area ; Biological and medical sciences ; diameter ; evaluation ; Forest management. Stand types and stand dynamics. Silvicultural treatments. Tending of stands. Natural regeneration ; Forest structure ; Forestry ; forests ; Fundamental and applied biological sciences. Psychology ; height ; methodology ; Patch ; plant characteristics ; Simulation ; simulation models ; spatial distribution ; Spatial pattern ; spatial variation ; stand density ; stand structure ; Stand types and stand dynamics. Silvicultural treatments. Tending of stands. Natural regeneration ; Structural complexity ; Structural heterogeneity ; tree age ; volume</subject><ispartof>Forest ecology and management, 2000-04, Vol.129 (1), p.75-87</ispartof><rights>2000 Elsevier Science B.V.</rights><rights>2000 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c391t-f9a1ecfe2ed3443705ec4cc4f7fc9ce5271fc0a83ff686565541db192ab50ad13</citedby><cites>FETCH-LOGICAL-c391t-f9a1ecfe2ed3443705ec4cc4f7fc9ce5271fc0a83ff686565541db192ab50ad13</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/S0378-1127(99)00140-1$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=1300742$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Zenner, Eric K</creatorcontrib><creatorcontrib>Hibbs, David E</creatorcontrib><title>A new method for modeling the heterogeneity of forest structure</title><title>Forest ecology and management</title><description>Despite the critical ecological roles of structural complexity, ecologically relevant quantitative measures of structural complexity that allow comparisons among forest stands are still lacking. The objective of this study was to develop a method that allows comparisons of structural heterogeneity among stands. To encompass a broad range of potential structural complexities, we simulated three spatial point patterns each for tree-size distributions from five inventoried natural stands. Forest structure was modeled and analyzed by simulating point patterns of trees and constructing triangular networks to connect neighboring tree tops to one another. This method is based on the concept of spatial tessellation of tree positions, where point patterns are converted into 2-dimensional nearest neighbor triangles. A structural complexity index (SCI) was defined as the sum of the areas of 3-dimensional triangles (with
x,
y, and
z coordinates) divided by the sum of the areas of 2-dimensional triangles. Vertical gradients were defined as the maximum size difference among the trees forming a triangle, that is, the greater the difference, the greater the structure and the larger the SCI value. Patch-types were defined as classes of structural gradients at different positions within the canopy. More patch-types are also indicative of more structurally heterogeneous stands. Both the SCI and the number of patch-types and patch-size heterogeneity related closely to conventional descriptors of forest structure. While the number of patch-types and patch-type heterogeneity related more to the vertical component of structural complexity, SCI integrated well with both the vertical and horizontal structure. SCI and the concept of patch-types complement one another and can be used to quantitatively compare the structure of different stands. The applicability of this modeling approach in characterizing the structural heterogeneity of forests across spatial scales is discussed.</description><subject>area</subject><subject>basal area</subject><subject>Biological and medical sciences</subject><subject>diameter</subject><subject>evaluation</subject><subject>Forest management. Stand types and stand dynamics. Silvicultural treatments. Tending of stands. Natural regeneration</subject><subject>Forest structure</subject><subject>Forestry</subject><subject>forests</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>height</subject><subject>methodology</subject><subject>Patch</subject><subject>plant characteristics</subject><subject>Simulation</subject><subject>simulation models</subject><subject>spatial distribution</subject><subject>Spatial pattern</subject><subject>spatial variation</subject><subject>stand density</subject><subject>stand structure</subject><subject>Stand types and stand dynamics. Silvicultural treatments. Tending of stands. Natural regeneration</subject><subject>Structural complexity</subject><subject>Structural heterogeneity</subject><subject>tree age</subject><subject>volume</subject><issn>0378-1127</issn><issn>1872-7042</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2000</creationdate><recordtype>article</recordtype><recordid>eNqFkE1LAzEQhoMoWD9-grgHET2sTrLJZnMSEb-g4EE9hzQ7aSPbjSap0n_v1hY9eprDPDPvy0PIEYULCrS-fIZKNiWlTJ4pdQ5AOZR0i4xoI1kpgbNtMvpFdsleSm8AIARvRuTquujxq5hjnoW2cCEW89Bi5_tpkWdYzDBjDFPs0edlEdyKwJSLlOPC5kXEA7LjTJfwcDP3yevd7cvNQzl-un-8uR6XtlI0l04ZitYhw7bivJIg0HJruZPOKouCSeosmKZyrm5qUQ_laDuhipmJANPSap-crv--x_CxGCrouU8Wu870GBZJUylAVlwMoFiDNoaUIjr9Hv3cxKWmoFe69I8uvXKhldI_uvQq4GQTYJI1nYumtz79HVcAkrMBO15jzgRtpnFAXp8ZDGumuKprNRBXawIHHZ8eo07WY2-x9RFt1m3w_1T5Bo9uh-Y</recordid><startdate>20000417</startdate><enddate>20000417</enddate><creator>Zenner, Eric K</creator><creator>Hibbs, David E</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>FBQ</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SN</scope><scope>C1K</scope></search><sort><creationdate>20000417</creationdate><title>A new method for modeling the heterogeneity of forest structure</title><author>Zenner, Eric K ; Hibbs, David E</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c391t-f9a1ecfe2ed3443705ec4cc4f7fc9ce5271fc0a83ff686565541db192ab50ad13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2000</creationdate><topic>area</topic><topic>basal area</topic><topic>Biological and medical sciences</topic><topic>diameter</topic><topic>evaluation</topic><topic>Forest management. Stand types and stand dynamics. Silvicultural treatments. Tending of stands. Natural regeneration</topic><topic>Forest structure</topic><topic>Forestry</topic><topic>forests</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>height</topic><topic>methodology</topic><topic>Patch</topic><topic>plant characteristics</topic><topic>Simulation</topic><topic>simulation models</topic><topic>spatial distribution</topic><topic>Spatial pattern</topic><topic>spatial variation</topic><topic>stand density</topic><topic>stand structure</topic><topic>Stand types and stand dynamics. Silvicultural treatments. Tending of stands. Natural regeneration</topic><topic>Structural complexity</topic><topic>Structural heterogeneity</topic><topic>tree age</topic><topic>volume</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zenner, Eric K</creatorcontrib><creatorcontrib>Hibbs, David E</creatorcontrib><collection>AGRIS</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Ecology Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><jtitle>Forest ecology and management</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zenner, Eric K</au><au>Hibbs, David E</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A new method for modeling the heterogeneity of forest structure</atitle><jtitle>Forest ecology and management</jtitle><date>2000-04-17</date><risdate>2000</risdate><volume>129</volume><issue>1</issue><spage>75</spage><epage>87</epage><pages>75-87</pages><issn>0378-1127</issn><eissn>1872-7042</eissn><coden>FECMDW</coden><abstract>Despite the critical ecological roles of structural complexity, ecologically relevant quantitative measures of structural complexity that allow comparisons among forest stands are still lacking. The objective of this study was to develop a method that allows comparisons of structural heterogeneity among stands. To encompass a broad range of potential structural complexities, we simulated three spatial point patterns each for tree-size distributions from five inventoried natural stands. Forest structure was modeled and analyzed by simulating point patterns of trees and constructing triangular networks to connect neighboring tree tops to one another. This method is based on the concept of spatial tessellation of tree positions, where point patterns are converted into 2-dimensional nearest neighbor triangles. A structural complexity index (SCI) was defined as the sum of the areas of 3-dimensional triangles (with
x,
y, and
z coordinates) divided by the sum of the areas of 2-dimensional triangles. Vertical gradients were defined as the maximum size difference among the trees forming a triangle, that is, the greater the difference, the greater the structure and the larger the SCI value. Patch-types were defined as classes of structural gradients at different positions within the canopy. More patch-types are also indicative of more structurally heterogeneous stands. Both the SCI and the number of patch-types and patch-size heterogeneity related closely to conventional descriptors of forest structure. While the number of patch-types and patch-type heterogeneity related more to the vertical component of structural complexity, SCI integrated well with both the vertical and horizontal structure. SCI and the concept of patch-types complement one another and can be used to quantitatively compare the structure of different stands. The applicability of this modeling approach in characterizing the structural heterogeneity of forests across spatial scales is discussed.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/S0378-1127(99)00140-1</doi><tpages>13</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0378-1127 |
ispartof | Forest ecology and management, 2000-04, Vol.129 (1), p.75-87 |
issn | 0378-1127 1872-7042 |
language | eng |
recordid | cdi_proquest_miscellaneous_17507345 |
source | Access via ScienceDirect (Elsevier) |
subjects | area basal area Biological and medical sciences diameter evaluation Forest management. Stand types and stand dynamics. Silvicultural treatments. Tending of stands. Natural regeneration Forest structure Forestry forests Fundamental and applied biological sciences. Psychology height methodology Patch plant characteristics Simulation simulation models spatial distribution Spatial pattern spatial variation stand density stand structure Stand types and stand dynamics. Silvicultural treatments. Tending of stands. Natural regeneration Structural complexity Structural heterogeneity tree age volume |
title | A new method for modeling the heterogeneity of forest structure |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T16%3A26%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20new%20method%20for%20modeling%20the%20heterogeneity%20of%20forest%20structure&rft.jtitle=Forest%20ecology%20and%20management&rft.au=Zenner,%20Eric%20K&rft.date=2000-04-17&rft.volume=129&rft.issue=1&rft.spage=75&rft.epage=87&rft.pages=75-87&rft.issn=0378-1127&rft.eissn=1872-7042&rft.coden=FECMDW&rft_id=info:doi/10.1016/S0378-1127(99)00140-1&rft_dat=%3Cproquest_cross%3E17507345%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=17507345&rft_id=info:pmid/&rft_els_id=S0378112799001401&rfr_iscdi=true |