Using high-resolution multi-spectral imagery to estimate habitat complexity in open-canopy forests: can we predict ant community patterns?

The structure and composition of arthropod assemblages are strongly associated with habitat complexity. Accurate, time efficient estimates of habitat complexity may provide insights for biodiversity management in natural systems. We obtained high-resolution (0.7 m pixel) multi-spectral aerial imager...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Ecography (Copenhagen) 2005-08, Vol.28 (4), p.495-504
Hauptverfasser: Lassau, Scott A., Cassis, Gerasimos, Flemons, Paul K. J., Wilkie, Lance, Hochuli, Dieter F.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 504
container_issue 4
container_start_page 495
container_title Ecography (Copenhagen)
container_volume 28
creator Lassau, Scott A.
Cassis, Gerasimos
Flemons, Paul K. J.
Wilkie, Lance
Hochuli, Dieter F.
description The structure and composition of arthropod assemblages are strongly associated with habitat complexity. Accurate, time efficient estimates of habitat complexity may provide insights for biodiversity management in natural systems. We obtained high-resolution (0.7 m pixel) multi-spectral aerial imagery of National Parks 20 km north and 20 km south of Sydney, Australia. We explored both the Normalised Difference Vegetation Index (NDVI) and the standard deviation of reflectance in the near-infrared spectrum (${\rm stdevR}_{{\rm NIR}}$) as indicators of low and high habitat complexity in sandstone forests north of Sydney. We then tested described predictions of ant community patterns (based on a previous study) using sites selected from high-resolution multi-spectral imagery in sandstone forests south of Sydney. Ground-scored habitat complexity was positively correlated with NDVIs and, to a lesser extent, ${\rm stdevR}_{{\rm NIR}}$ values in sandstone forests north of Sydney. As predicted, ant species richness was negatively correlated with NDVIs in forests to the south of Sydney. Also, ant species composition was different in areas with contrasting NDVIs. The ant species driving composition differences responded to habitat complexity in a similar way in forests to the north, and south, of Sydney. The strong association we detected between NDVIs and habitat complexity, most likely reflects the relatively exposed nature of the vegetative layers in the forests we sampled. Remote sensing, integrated with quantitative research testing predictive faunal responses to vegetation structure and biomass at landscape scales, may provide efficient means of estimating biodiversity for management in particular habitats.
doi_str_mv 10.1111/j.0906-7590.2005.04116.x
format Article
fullrecord <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_17505976</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>3683389</jstor_id><sourcerecordid>3683389</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5006-a1da7a0283763538866d4b71b66fc65e60d7e6a714d646a00457dd88709d481f3</originalsourceid><addsrcrecordid>eNqNkM1u1DAUhS0EEsOUN2DhDewS7En8ExYgFLUDatUuoIKd5XGcGQ-JHWxHnbwCT43TVMMWb-yre853fQ8AEKMcp_P-mKMK0YyRCuUbhEiOSoxpfnoGVpgilCHC2XOwOoteglchHBHCm4ryFfhzH4zdw4PZHzKvg-vGaJyF_dhFk4VBq-hlB00v99pPMDqoQ0xV1PAgdybKCJXrh06fTJygsdAN2mZKWjdMsHWJGMMHmGr4oOHgdWNUhNI-uvrRzqZBxqi9DZ8uwItWdkG_frrX4P7q8nv9Jbu5236tP99kiqC0hMSNZBJteMFoQQrOKW3KHcM7SltFiaaoYZpKhsuGllQiVBLWNJwzVDUlx22xBu8W7uDd7zH9UPQmKN110mo3BoEZQaRK8DXgi1B5F4LXrRh82t1PAiMxhy-OYs5VzLmKOXzxGL44JevbpxkyKNm1Xlplwj8_rUpOWZl0Hxfdg-n09N98cVnfbednArxZAMcQnT8DCsqLglepnS1tE6I-ndvS_xKUFYyIH7db8ZPX17esvhLfir-kGrMZ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>17505976</pqid></control><display><type>article</type><title>Using high-resolution multi-spectral imagery to estimate habitat complexity in open-canopy forests: can we predict ant community patterns?</title><source>Jstor Complete Legacy</source><source>Wiley Online Library Journals Frontfile Complete</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Lassau, Scott A. ; Cassis, Gerasimos ; Flemons, Paul K. J. ; Wilkie, Lance ; Hochuli, Dieter F.</creator><creatorcontrib>Lassau, Scott A. ; Cassis, Gerasimos ; Flemons, Paul K. J. ; Wilkie, Lance ; Hochuli, Dieter F.</creatorcontrib><description>The structure and composition of arthropod assemblages are strongly associated with habitat complexity. Accurate, time efficient estimates of habitat complexity may provide insights for biodiversity management in natural systems. We obtained high-resolution (0.7 m pixel) multi-spectral aerial imagery of National Parks 20 km north and 20 km south of Sydney, Australia. We explored both the Normalised Difference Vegetation Index (NDVI) and the standard deviation of reflectance in the near-infrared spectrum (${\rm stdevR}_{{\rm NIR}}$) as indicators of low and high habitat complexity in sandstone forests north of Sydney. We then tested described predictions of ant community patterns (based on a previous study) using sites selected from high-resolution multi-spectral imagery in sandstone forests south of Sydney. Ground-scored habitat complexity was positively correlated with NDVIs and, to a lesser extent, ${\rm stdevR}_{{\rm NIR}}$ values in sandstone forests north of Sydney. As predicted, ant species richness was negatively correlated with NDVIs in forests to the south of Sydney. Also, ant species composition was different in areas with contrasting NDVIs. The ant species driving composition differences responded to habitat complexity in a similar way in forests to the north, and south, of Sydney. The strong association we detected between NDVIs and habitat complexity, most likely reflects the relatively exposed nature of the vegetative layers in the forests we sampled. Remote sensing, integrated with quantitative research testing predictive faunal responses to vegetation structure and biomass at landscape scales, may provide efficient means of estimating biodiversity for management in particular habitats.</description><identifier>ISSN: 0906-7590</identifier><identifier>EISSN: 1600-0587</identifier><identifier>DOI: 10.1111/j.0906-7590.2005.04116.x</identifier><language>eng</language><publisher>Copenhagen: Munksgaard International Publishers</publisher><subject>Animal and plant ecology ; Animal, plant and microbial ecology ; Ants ; Biological and medical sciences ; Forest habitats ; Forest insects ; Formicidae ; Fundamental and applied biological sciences. Psychology ; General aspects ; Habitat conservation ; Habitats ; Insect communities ; Pixels ; Remote sensing ; Species ; Spectral reflectance</subject><ispartof>Ecography (Copenhagen), 2005-08, Vol.28 (4), p.495-504</ispartof><rights>Copyright 2005 Ecography</rights><rights>2005 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5006-a1da7a0283763538866d4b71b66fc65e60d7e6a714d646a00457dd88709d481f3</citedby><cites>FETCH-LOGICAL-c5006-a1da7a0283763538866d4b71b66fc65e60d7e6a714d646a00457dd88709d481f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/3683389$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/3683389$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,776,780,799,1411,27901,27902,45550,45551,57992,58225</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=16948674$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Lassau, Scott A.</creatorcontrib><creatorcontrib>Cassis, Gerasimos</creatorcontrib><creatorcontrib>Flemons, Paul K. J.</creatorcontrib><creatorcontrib>Wilkie, Lance</creatorcontrib><creatorcontrib>Hochuli, Dieter F.</creatorcontrib><title>Using high-resolution multi-spectral imagery to estimate habitat complexity in open-canopy forests: can we predict ant community patterns?</title><title>Ecography (Copenhagen)</title><addtitle>Ecography</addtitle><description>The structure and composition of arthropod assemblages are strongly associated with habitat complexity. Accurate, time efficient estimates of habitat complexity may provide insights for biodiversity management in natural systems. We obtained high-resolution (0.7 m pixel) multi-spectral aerial imagery of National Parks 20 km north and 20 km south of Sydney, Australia. We explored both the Normalised Difference Vegetation Index (NDVI) and the standard deviation of reflectance in the near-infrared spectrum (${\rm stdevR}_{{\rm NIR}}$) as indicators of low and high habitat complexity in sandstone forests north of Sydney. We then tested described predictions of ant community patterns (based on a previous study) using sites selected from high-resolution multi-spectral imagery in sandstone forests south of Sydney. Ground-scored habitat complexity was positively correlated with NDVIs and, to a lesser extent, ${\rm stdevR}_{{\rm NIR}}$ values in sandstone forests north of Sydney. As predicted, ant species richness was negatively correlated with NDVIs in forests to the south of Sydney. Also, ant species composition was different in areas with contrasting NDVIs. The ant species driving composition differences responded to habitat complexity in a similar way in forests to the north, and south, of Sydney. The strong association we detected between NDVIs and habitat complexity, most likely reflects the relatively exposed nature of the vegetative layers in the forests we sampled. Remote sensing, integrated with quantitative research testing predictive faunal responses to vegetation structure and biomass at landscape scales, may provide efficient means of estimating biodiversity for management in particular habitats.</description><subject>Animal and plant ecology</subject><subject>Animal, plant and microbial ecology</subject><subject>Ants</subject><subject>Biological and medical sciences</subject><subject>Forest habitats</subject><subject>Forest insects</subject><subject>Formicidae</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>General aspects</subject><subject>Habitat conservation</subject><subject>Habitats</subject><subject>Insect communities</subject><subject>Pixels</subject><subject>Remote sensing</subject><subject>Species</subject><subject>Spectral reflectance</subject><issn>0906-7590</issn><issn>1600-0587</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><recordid>eNqNkM1u1DAUhS0EEsOUN2DhDewS7En8ExYgFLUDatUuoIKd5XGcGQ-JHWxHnbwCT43TVMMWb-yre853fQ8AEKMcp_P-mKMK0YyRCuUbhEiOSoxpfnoGVpgilCHC2XOwOoteglchHBHCm4ryFfhzH4zdw4PZHzKvg-vGaJyF_dhFk4VBq-hlB00v99pPMDqoQ0xV1PAgdybKCJXrh06fTJygsdAN2mZKWjdMsHWJGMMHmGr4oOHgdWNUhNI-uvrRzqZBxqi9DZ8uwItWdkG_frrX4P7q8nv9Jbu5236tP99kiqC0hMSNZBJteMFoQQrOKW3KHcM7SltFiaaoYZpKhsuGllQiVBLWNJwzVDUlx22xBu8W7uDd7zH9UPQmKN110mo3BoEZQaRK8DXgi1B5F4LXrRh82t1PAiMxhy-OYs5VzLmKOXzxGL44JevbpxkyKNm1Xlplwj8_rUpOWZl0Hxfdg-n09N98cVnfbednArxZAMcQnT8DCsqLglepnS1tE6I-ndvS_xKUFYyIH7db8ZPX17esvhLfir-kGrMZ</recordid><startdate>200508</startdate><enddate>200508</enddate><creator>Lassau, Scott A.</creator><creator>Cassis, Gerasimos</creator><creator>Flemons, Paul K. J.</creator><creator>Wilkie, Lance</creator><creator>Hochuli, Dieter F.</creator><general>Munksgaard International Publishers</general><general>Blackwell Publishers</general><general>Blackwell</general><scope>BSCLL</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SN</scope><scope>7SS</scope><scope>C1K</scope></search><sort><creationdate>200508</creationdate><title>Using high-resolution multi-spectral imagery to estimate habitat complexity in open-canopy forests: can we predict ant community patterns?</title><author>Lassau, Scott A. ; Cassis, Gerasimos ; Flemons, Paul K. J. ; Wilkie, Lance ; Hochuli, Dieter F.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5006-a1da7a0283763538866d4b71b66fc65e60d7e6a714d646a00457dd88709d481f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Animal and plant ecology</topic><topic>Animal, plant and microbial ecology</topic><topic>Ants</topic><topic>Biological and medical sciences</topic><topic>Forest habitats</topic><topic>Forest insects</topic><topic>Formicidae</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>General aspects</topic><topic>Habitat conservation</topic><topic>Habitats</topic><topic>Insect communities</topic><topic>Pixels</topic><topic>Remote sensing</topic><topic>Species</topic><topic>Spectral reflectance</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lassau, Scott A.</creatorcontrib><creatorcontrib>Cassis, Gerasimos</creatorcontrib><creatorcontrib>Flemons, Paul K. J.</creatorcontrib><creatorcontrib>Wilkie, Lance</creatorcontrib><creatorcontrib>Hochuli, Dieter F.</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environmental Sciences and Pollution Management</collection><jtitle>Ecography (Copenhagen)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lassau, Scott A.</au><au>Cassis, Gerasimos</au><au>Flemons, Paul K. J.</au><au>Wilkie, Lance</au><au>Hochuli, Dieter F.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Using high-resolution multi-spectral imagery to estimate habitat complexity in open-canopy forests: can we predict ant community patterns?</atitle><jtitle>Ecography (Copenhagen)</jtitle><addtitle>Ecography</addtitle><date>2005-08</date><risdate>2005</risdate><volume>28</volume><issue>4</issue><spage>495</spage><epage>504</epage><pages>495-504</pages><issn>0906-7590</issn><eissn>1600-0587</eissn><abstract>The structure and composition of arthropod assemblages are strongly associated with habitat complexity. Accurate, time efficient estimates of habitat complexity may provide insights for biodiversity management in natural systems. We obtained high-resolution (0.7 m pixel) multi-spectral aerial imagery of National Parks 20 km north and 20 km south of Sydney, Australia. We explored both the Normalised Difference Vegetation Index (NDVI) and the standard deviation of reflectance in the near-infrared spectrum (${\rm stdevR}_{{\rm NIR}}$) as indicators of low and high habitat complexity in sandstone forests north of Sydney. We then tested described predictions of ant community patterns (based on a previous study) using sites selected from high-resolution multi-spectral imagery in sandstone forests south of Sydney. Ground-scored habitat complexity was positively correlated with NDVIs and, to a lesser extent, ${\rm stdevR}_{{\rm NIR}}$ values in sandstone forests north of Sydney. As predicted, ant species richness was negatively correlated with NDVIs in forests to the south of Sydney. Also, ant species composition was different in areas with contrasting NDVIs. The ant species driving composition differences responded to habitat complexity in a similar way in forests to the north, and south, of Sydney. The strong association we detected between NDVIs and habitat complexity, most likely reflects the relatively exposed nature of the vegetative layers in the forests we sampled. Remote sensing, integrated with quantitative research testing predictive faunal responses to vegetation structure and biomass at landscape scales, may provide efficient means of estimating biodiversity for management in particular habitats.</abstract><cop>Copenhagen</cop><pub>Munksgaard International Publishers</pub><doi>10.1111/j.0906-7590.2005.04116.x</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0906-7590
ispartof Ecography (Copenhagen), 2005-08, Vol.28 (4), p.495-504
issn 0906-7590
1600-0587
language eng
recordid cdi_proquest_miscellaneous_17505976
source Jstor Complete Legacy; Wiley Online Library Journals Frontfile Complete; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects Animal and plant ecology
Animal, plant and microbial ecology
Ants
Biological and medical sciences
Forest habitats
Forest insects
Formicidae
Fundamental and applied biological sciences. Psychology
General aspects
Habitat conservation
Habitats
Insect communities
Pixels
Remote sensing
Species
Spectral reflectance
title Using high-resolution multi-spectral imagery to estimate habitat complexity in open-canopy forests: can we predict ant community patterns?
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-18T21%3A02%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Using%20high-resolution%20multi-spectral%20imagery%20to%20estimate%20habitat%20complexity%20in%20open-canopy%20forests:%20can%20we%20predict%20ant%20community%20patterns?&rft.jtitle=Ecography%20(Copenhagen)&rft.au=Lassau,%20Scott%20A.&rft.date=2005-08&rft.volume=28&rft.issue=4&rft.spage=495&rft.epage=504&rft.pages=495-504&rft.issn=0906-7590&rft.eissn=1600-0587&rft_id=info:doi/10.1111/j.0906-7590.2005.04116.x&rft_dat=%3Cjstor_proqu%3E3683389%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=17505976&rft_id=info:pmid/&rft_jstor_id=3683389&rfr_iscdi=true