Neural Controller Design-Based Adaptive Control for Nonlinear MIMO Systems With Unknown Hysteresis Inputs

This paper studies an adaptive neural control for nonlinear multiple-input multiple-output systems in interconnected form. The studied systems are composed of {N} subsystems in pure feedback structure and the interconnection terms are contained in every equation of each subsystem. Moreover, the stud...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on cybernetics 2016-01, Vol.46 (1), p.9-19
Hauptverfasser: Yan-Jun Liu, Shaocheng Tong, Chen, C. L. Philip, Dong-Juan Li
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 19
container_issue 1
container_start_page 9
container_title IEEE transactions on cybernetics
container_volume 46
creator Yan-Jun Liu
Shaocheng Tong
Chen, C. L. Philip
Dong-Juan Li
description This paper studies an adaptive neural control for nonlinear multiple-input multiple-output systems in interconnected form. The studied systems are composed of {N} subsystems in pure feedback structure and the interconnection terms are contained in every equation of each subsystem. Moreover, the studied systems consider the effects of Prandtl-Ishlinskii (PI) hysteresis model. It is for the first time to study the control problem for such a class of systems. In addition, the proposed scheme removes an important assumption imposed on the previous works that the bounds of the parameters in PI hysteresis are known. The radial basis functions neural networks are employed to approximate unknown functions. The adaptation laws and the controllers are designed by employing the backstepping technique. The closed-loop system can be proven to be stable by using Lyapunov theorem. A simulation example is studied to validate the effectiveness of the scheme.
doi_str_mv 10.1109/TCYB.2015.2388582
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_miscellaneous_1750436342</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7087385</ieee_id><sourcerecordid>1837320531</sourcerecordid><originalsourceid>FETCH-LOGICAL-c485t-6ada1d7bb396e1d33b9ab3f8d42105178f972c371206c0d764ad7a40a42df4853</originalsourceid><addsrcrecordid>eNqNkUtP3DAURq2qVUGUH1BVqix1002mfttZwpTHSDwWgBCryIlv2tCMPdgJiH-P0xlm0U3x5lrX536WfRD6TMmMUlL-uJ7fHc4YoXLGuDHSsHdol1FlCsa0fL_dK72D9lO6J3mZ3CrNR7TDZK6cyV3UXcAYbY_nwQ8x9D1E_BNS98sXhzaBwwfOrobuEV4B3IaIL4LvOw824vPF-SW-ek4DLBO-7Ybf-Mb_8eHJ49OpGXNUwgu_Gof0CX1obZ9gf1P30M3x0fX8tDi7PFnMD86KRhg5FMo6S52ua14qoI7zurQ1b40TjBJJtWlLzRquKSOqIU4rYZ22gljBXJsT-B76vs5dxfAwQhqqZZca6HvrIYypooZrzojk9P-oNorRUgn9BlQSwRUXLKPf_kHvwxh9fvNfiphSyOluuqaaGFKK0Far2C1tfK4oqSbB1SS4mgRXG8F55usmeayX4LYTrzoz8GUNdACwPdbEaJ5_5gULRafG</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1750089451</pqid></control><display><type>article</type><title>Neural Controller Design-Based Adaptive Control for Nonlinear MIMO Systems With Unknown Hysteresis Inputs</title><source>IEEE Electronic Library (IEL)</source><creator>Yan-Jun Liu ; Shaocheng Tong ; Chen, C. L. Philip ; Dong-Juan Li</creator><creatorcontrib>Yan-Jun Liu ; Shaocheng Tong ; Chen, C. L. Philip ; Dong-Juan Li</creatorcontrib><description>This paper studies an adaptive neural control for nonlinear multiple-input multiple-output systems in interconnected form. The studied systems are composed of {N} subsystems in pure feedback structure and the interconnection terms are contained in every equation of each subsystem. Moreover, the studied systems consider the effects of Prandtl-Ishlinskii (PI) hysteresis model. It is for the first time to study the control problem for such a class of systems. In addition, the proposed scheme removes an important assumption imposed on the previous works that the bounds of the parameters in PI hysteresis are known. The radial basis functions neural networks are employed to approximate unknown functions. The adaptation laws and the controllers are designed by employing the backstepping technique. The closed-loop system can be proven to be stable by using Lyapunov theorem. A simulation example is studied to validate the effectiveness of the scheme.</description><identifier>ISSN: 2168-2267</identifier><identifier>EISSN: 2168-2275</identifier><identifier>DOI: 10.1109/TCYB.2015.2388582</identifier><identifier>PMID: 25898325</identifier><identifier>CODEN: ITCEB8</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Adaptation models ; Adaptive control ; Algorithms ; Artificial neural networks ; Computer Simulation ; Control systems ; Controllers ; Hysteresis ; intelligent control ; Mathematical model ; Mathematical models ; MIMO ; MIMO (control systems) ; Models, Theoretical ; Neural networks ; Neural Networks (Computer) ; neural networks (NNs) ; nonlinear control theory ; Nonlinear Dynamics ; Nonlinearity ; Prandtl-Ishlinskii (PI) hysteresis inputs</subject><ispartof>IEEE transactions on cybernetics, 2016-01, Vol.46 (1), p.9-19</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2016</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c485t-6ada1d7bb396e1d33b9ab3f8d42105178f972c371206c0d764ad7a40a42df4853</citedby><cites>FETCH-LOGICAL-c485t-6ada1d7bb396e1d33b9ab3f8d42105178f972c371206c0d764ad7a40a42df4853</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7087385$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/7087385$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25898325$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Yan-Jun Liu</creatorcontrib><creatorcontrib>Shaocheng Tong</creatorcontrib><creatorcontrib>Chen, C. L. Philip</creatorcontrib><creatorcontrib>Dong-Juan Li</creatorcontrib><title>Neural Controller Design-Based Adaptive Control for Nonlinear MIMO Systems With Unknown Hysteresis Inputs</title><title>IEEE transactions on cybernetics</title><addtitle>TCYB</addtitle><addtitle>IEEE Trans Cybern</addtitle><description>This paper studies an adaptive neural control for nonlinear multiple-input multiple-output systems in interconnected form. The studied systems are composed of {N} subsystems in pure feedback structure and the interconnection terms are contained in every equation of each subsystem. Moreover, the studied systems consider the effects of Prandtl-Ishlinskii (PI) hysteresis model. It is for the first time to study the control problem for such a class of systems. In addition, the proposed scheme removes an important assumption imposed on the previous works that the bounds of the parameters in PI hysteresis are known. The radial basis functions neural networks are employed to approximate unknown functions. The adaptation laws and the controllers are designed by employing the backstepping technique. The closed-loop system can be proven to be stable by using Lyapunov theorem. A simulation example is studied to validate the effectiveness of the scheme.</description><subject>Adaptation models</subject><subject>Adaptive control</subject><subject>Algorithms</subject><subject>Artificial neural networks</subject><subject>Computer Simulation</subject><subject>Control systems</subject><subject>Controllers</subject><subject>Hysteresis</subject><subject>intelligent control</subject><subject>Mathematical model</subject><subject>Mathematical models</subject><subject>MIMO</subject><subject>MIMO (control systems)</subject><subject>Models, Theoretical</subject><subject>Neural networks</subject><subject>Neural Networks (Computer)</subject><subject>neural networks (NNs)</subject><subject>nonlinear control theory</subject><subject>Nonlinear Dynamics</subject><subject>Nonlinearity</subject><subject>Prandtl-Ishlinskii (PI) hysteresis inputs</subject><issn>2168-2267</issn><issn>2168-2275</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><sourceid>EIF</sourceid><recordid>eNqNkUtP3DAURq2qVUGUH1BVqix1002mfttZwpTHSDwWgBCryIlv2tCMPdgJiH-P0xlm0U3x5lrX536WfRD6TMmMUlL-uJ7fHc4YoXLGuDHSsHdol1FlCsa0fL_dK72D9lO6J3mZ3CrNR7TDZK6cyV3UXcAYbY_nwQ8x9D1E_BNS98sXhzaBwwfOrobuEV4B3IaIL4LvOw824vPF-SW-ek4DLBO-7Ybf-Mb_8eHJ49OpGXNUwgu_Gof0CX1obZ9gf1P30M3x0fX8tDi7PFnMD86KRhg5FMo6S52ua14qoI7zurQ1b40TjBJJtWlLzRquKSOqIU4rYZ22gljBXJsT-B76vs5dxfAwQhqqZZca6HvrIYypooZrzojk9P-oNorRUgn9BlQSwRUXLKPf_kHvwxh9fvNfiphSyOluuqaaGFKK0Far2C1tfK4oqSbB1SS4mgRXG8F55usmeayX4LYTrzoz8GUNdACwPdbEaJ5_5gULRafG</recordid><startdate>20160101</startdate><enddate>20160101</enddate><creator>Yan-Jun Liu</creator><creator>Shaocheng Tong</creator><creator>Chen, C. L. Philip</creator><creator>Dong-Juan Li</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope><scope>7TK</scope></search><sort><creationdate>20160101</creationdate><title>Neural Controller Design-Based Adaptive Control for Nonlinear MIMO Systems With Unknown Hysteresis Inputs</title><author>Yan-Jun Liu ; Shaocheng Tong ; Chen, C. L. Philip ; Dong-Juan Li</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c485t-6ada1d7bb396e1d33b9ab3f8d42105178f972c371206c0d764ad7a40a42df4853</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Adaptation models</topic><topic>Adaptive control</topic><topic>Algorithms</topic><topic>Artificial neural networks</topic><topic>Computer Simulation</topic><topic>Control systems</topic><topic>Controllers</topic><topic>Hysteresis</topic><topic>intelligent control</topic><topic>Mathematical model</topic><topic>Mathematical models</topic><topic>MIMO</topic><topic>MIMO (control systems)</topic><topic>Models, Theoretical</topic><topic>Neural networks</topic><topic>Neural Networks (Computer)</topic><topic>neural networks (NNs)</topic><topic>nonlinear control theory</topic><topic>Nonlinear Dynamics</topic><topic>Nonlinearity</topic><topic>Prandtl-Ishlinskii (PI) hysteresis inputs</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yan-Jun Liu</creatorcontrib><creatorcontrib>Shaocheng Tong</creatorcontrib><creatorcontrib>Chen, C. L. Philip</creatorcontrib><creatorcontrib>Dong-Juan Li</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><collection>Neurosciences Abstracts</collection><jtitle>IEEE transactions on cybernetics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Yan-Jun Liu</au><au>Shaocheng Tong</au><au>Chen, C. L. Philip</au><au>Dong-Juan Li</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Neural Controller Design-Based Adaptive Control for Nonlinear MIMO Systems With Unknown Hysteresis Inputs</atitle><jtitle>IEEE transactions on cybernetics</jtitle><stitle>TCYB</stitle><addtitle>IEEE Trans Cybern</addtitle><date>2016-01-01</date><risdate>2016</risdate><volume>46</volume><issue>1</issue><spage>9</spage><epage>19</epage><pages>9-19</pages><issn>2168-2267</issn><eissn>2168-2275</eissn><coden>ITCEB8</coden><abstract>This paper studies an adaptive neural control for nonlinear multiple-input multiple-output systems in interconnected form. The studied systems are composed of {N} subsystems in pure feedback structure and the interconnection terms are contained in every equation of each subsystem. Moreover, the studied systems consider the effects of Prandtl-Ishlinskii (PI) hysteresis model. It is for the first time to study the control problem for such a class of systems. In addition, the proposed scheme removes an important assumption imposed on the previous works that the bounds of the parameters in PI hysteresis are known. The radial basis functions neural networks are employed to approximate unknown functions. The adaptation laws and the controllers are designed by employing the backstepping technique. The closed-loop system can be proven to be stable by using Lyapunov theorem. A simulation example is studied to validate the effectiveness of the scheme.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>25898325</pmid><doi>10.1109/TCYB.2015.2388582</doi><tpages>11</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2168-2267
ispartof IEEE transactions on cybernetics, 2016-01, Vol.46 (1), p.9-19
issn 2168-2267
2168-2275
language eng
recordid cdi_proquest_miscellaneous_1750436342
source IEEE Electronic Library (IEL)
subjects Adaptation models
Adaptive control
Algorithms
Artificial neural networks
Computer Simulation
Control systems
Controllers
Hysteresis
intelligent control
Mathematical model
Mathematical models
MIMO
MIMO (control systems)
Models, Theoretical
Neural networks
Neural Networks (Computer)
neural networks (NNs)
nonlinear control theory
Nonlinear Dynamics
Nonlinearity
Prandtl-Ishlinskii (PI) hysteresis inputs
title Neural Controller Design-Based Adaptive Control for Nonlinear MIMO Systems With Unknown Hysteresis Inputs
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T16%3A29%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Neural%20Controller%20Design-Based%20Adaptive%20Control%20for%20Nonlinear%20MIMO%20Systems%20With%20Unknown%20Hysteresis%20Inputs&rft.jtitle=IEEE%20transactions%20on%20cybernetics&rft.au=Yan-Jun%20Liu&rft.date=2016-01-01&rft.volume=46&rft.issue=1&rft.spage=9&rft.epage=19&rft.pages=9-19&rft.issn=2168-2267&rft.eissn=2168-2275&rft.coden=ITCEB8&rft_id=info:doi/10.1109/TCYB.2015.2388582&rft_dat=%3Cproquest_RIE%3E1837320531%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1750089451&rft_id=info:pmid/25898325&rft_ieee_id=7087385&rfr_iscdi=true