Cluster-based query expansion using external collections in medical information retrieval

[Display omitted] •We propose a query expansion method which utilizes multiple external collections.•To estimate each relevance model, we use the structure of the external collections.•Our method extends queries effectively by considering related context information.•Exhaustive experiments on three...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of biomedical informatics 2015-12, Vol.58, p.70-79
Hauptverfasser: Oh, Heung-Seon, Jung, Yuchul
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 79
container_issue
container_start_page 70
container_title Journal of biomedical informatics
container_volume 58
creator Oh, Heung-Seon
Jung, Yuchul
description [Display omitted] •We propose a query expansion method which utilizes multiple external collections.•To estimate each relevance model, we use the structure of the external collections.•Our method extends queries effectively by considering related context information.•Exhaustive experiments on three different medical test collections were performed.•We report our lessons learned from dealing with different medical test collections. Utilizing external collections to improve retrieval performance is challenging research because various test collections are created for different purposes. Improving medical information retrieval has also gained much attention as various types of medical documents have become available to researchers ever since they started storing them in machine processable formats. In this paper, we propose an effective method of utilizing external collections based on the pseudo relevance feedback approach. Our method incorporates the structure of external collections in estimating individual components in the final feedback model. Extensive experiments on three medical collections (TREC CDS, CLEF eHealth, and OHSUMED) were performed, and the results were compared with a representative expansion approach utilizing the external collections to show the superiority of our method.
doi_str_mv 10.1016/j.jbi.2015.09.017
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1750433630</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1532046415002117</els_id><sourcerecordid>1750433630</sourcerecordid><originalsourceid>FETCH-LOGICAL-c396t-f6951a36f378d5f640f4b42c0823e68c6eb3e556d4949427fb4937417379f16c3</originalsourceid><addsrcrecordid>eNp9kD1PwzAQhi0EoqXwA1hQRpYEO_5ILCZU8SVVYoGByXKcM3KUj2InFf33uGrpiDyc7-69V3cPQtcEZwQTcddkTeWyHBOeYZlhUpygOeE0TzEr8enxL9gMXYTQYEwI5-IczXLBcsllPkefy3YKI_i00gHq5HsCv03gZ6374IY-mYLrv2IeFb1uEzO0LZgxdkLi-qSD2plYdr0dfKd39cTD6B1sdHuJzqxuA1wd4gJ9PD2-L1_S1dvz6_JhlRoqxZhaITnRVFhalDW3gmHLKpYbXOYURGkEVBTi1jWT8eWFrZikBSMFLaQlwtAFut37rv0Q1w-j6lww0La6h2EKihQcM0oFxVFK9lLjhxA8WLX2rtN-qwhWO6KqUZGo2hFVWKpINM7cHOynKt57nPhDGAX3ewHEIzcOvArGQW8iGx9ZqXpw_9j_AsldhuM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1750433630</pqid></control><display><type>article</type><title>Cluster-based query expansion using external collections in medical information retrieval</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Oh, Heung-Seon ; Jung, Yuchul</creator><creatorcontrib>Oh, Heung-Seon ; Jung, Yuchul</creatorcontrib><description>[Display omitted] •We propose a query expansion method which utilizes multiple external collections.•To estimate each relevance model, we use the structure of the external collections.•Our method extends queries effectively by considering related context information.•Exhaustive experiments on three different medical test collections were performed.•We report our lessons learned from dealing with different medical test collections. Utilizing external collections to improve retrieval performance is challenging research because various test collections are created for different purposes. Improving medical information retrieval has also gained much attention as various types of medical documents have become available to researchers ever since they started storing them in machine processable formats. In this paper, we propose an effective method of utilizing external collections based on the pseudo relevance feedback approach. Our method incorporates the structure of external collections in estimating individual components in the final feedback model. Extensive experiments on three medical collections (TREC CDS, CLEF eHealth, and OHSUMED) were performed, and the results were compared with a representative expansion approach utilizing the external collections to show the superiority of our method.</description><identifier>ISSN: 1532-0464</identifier><identifier>EISSN: 1532-0480</identifier><identifier>DOI: 10.1016/j.jbi.2015.09.017</identifier><identifier>PMID: 26429592</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Cluster Analysis ; External collections ; Information Storage and Retrieval ; Language models ; Models, Theoretical ; Query expansion</subject><ispartof>Journal of biomedical informatics, 2015-12, Vol.58, p.70-79</ispartof><rights>2015 Elsevier Inc.</rights><rights>Copyright © 2015 Elsevier Inc. All rights reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c396t-f6951a36f378d5f640f4b42c0823e68c6eb3e556d4949427fb4937417379f16c3</citedby><cites>FETCH-LOGICAL-c396t-f6951a36f378d5f640f4b42c0823e68c6eb3e556d4949427fb4937417379f16c3</cites><orcidid>0000-0002-8871-1979 ; 0000-0002-9193-8998</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S1532046415002117$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26429592$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Oh, Heung-Seon</creatorcontrib><creatorcontrib>Jung, Yuchul</creatorcontrib><title>Cluster-based query expansion using external collections in medical information retrieval</title><title>Journal of biomedical informatics</title><addtitle>J Biomed Inform</addtitle><description>[Display omitted] •We propose a query expansion method which utilizes multiple external collections.•To estimate each relevance model, we use the structure of the external collections.•Our method extends queries effectively by considering related context information.•Exhaustive experiments on three different medical test collections were performed.•We report our lessons learned from dealing with different medical test collections. Utilizing external collections to improve retrieval performance is challenging research because various test collections are created for different purposes. Improving medical information retrieval has also gained much attention as various types of medical documents have become available to researchers ever since they started storing them in machine processable formats. In this paper, we propose an effective method of utilizing external collections based on the pseudo relevance feedback approach. Our method incorporates the structure of external collections in estimating individual components in the final feedback model. Extensive experiments on three medical collections (TREC CDS, CLEF eHealth, and OHSUMED) were performed, and the results were compared with a representative expansion approach utilizing the external collections to show the superiority of our method.</description><subject>Cluster Analysis</subject><subject>External collections</subject><subject>Information Storage and Retrieval</subject><subject>Language models</subject><subject>Models, Theoretical</subject><subject>Query expansion</subject><issn>1532-0464</issn><issn>1532-0480</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kD1PwzAQhi0EoqXwA1hQRpYEO_5ILCZU8SVVYoGByXKcM3KUj2InFf33uGrpiDyc7-69V3cPQtcEZwQTcddkTeWyHBOeYZlhUpygOeE0TzEr8enxL9gMXYTQYEwI5-IczXLBcsllPkefy3YKI_i00gHq5HsCv03gZ6374IY-mYLrv2IeFb1uEzO0LZgxdkLi-qSD2plYdr0dfKd39cTD6B1sdHuJzqxuA1wd4gJ9PD2-L1_S1dvz6_JhlRoqxZhaITnRVFhalDW3gmHLKpYbXOYURGkEVBTi1jWT8eWFrZikBSMFLaQlwtAFut37rv0Q1w-j6lww0La6h2EKihQcM0oFxVFK9lLjhxA8WLX2rtN-qwhWO6KqUZGo2hFVWKpINM7cHOynKt57nPhDGAX3ewHEIzcOvArGQW8iGx9ZqXpw_9j_AsldhuM</recordid><startdate>201512</startdate><enddate>201512</enddate><creator>Oh, Heung-Seon</creator><creator>Jung, Yuchul</creator><general>Elsevier Inc</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-8871-1979</orcidid><orcidid>https://orcid.org/0000-0002-9193-8998</orcidid></search><sort><creationdate>201512</creationdate><title>Cluster-based query expansion using external collections in medical information retrieval</title><author>Oh, Heung-Seon ; Jung, Yuchul</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c396t-f6951a36f378d5f640f4b42c0823e68c6eb3e556d4949427fb4937417379f16c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Cluster Analysis</topic><topic>External collections</topic><topic>Information Storage and Retrieval</topic><topic>Language models</topic><topic>Models, Theoretical</topic><topic>Query expansion</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Oh, Heung-Seon</creatorcontrib><creatorcontrib>Jung, Yuchul</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of biomedical informatics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Oh, Heung-Seon</au><au>Jung, Yuchul</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Cluster-based query expansion using external collections in medical information retrieval</atitle><jtitle>Journal of biomedical informatics</jtitle><addtitle>J Biomed Inform</addtitle><date>2015-12</date><risdate>2015</risdate><volume>58</volume><spage>70</spage><epage>79</epage><pages>70-79</pages><issn>1532-0464</issn><eissn>1532-0480</eissn><abstract>[Display omitted] •We propose a query expansion method which utilizes multiple external collections.•To estimate each relevance model, we use the structure of the external collections.•Our method extends queries effectively by considering related context information.•Exhaustive experiments on three different medical test collections were performed.•We report our lessons learned from dealing with different medical test collections. Utilizing external collections to improve retrieval performance is challenging research because various test collections are created for different purposes. Improving medical information retrieval has also gained much attention as various types of medical documents have become available to researchers ever since they started storing them in machine processable formats. In this paper, we propose an effective method of utilizing external collections based on the pseudo relevance feedback approach. Our method incorporates the structure of external collections in estimating individual components in the final feedback model. Extensive experiments on three medical collections (TREC CDS, CLEF eHealth, and OHSUMED) were performed, and the results were compared with a representative expansion approach utilizing the external collections to show the superiority of our method.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>26429592</pmid><doi>10.1016/j.jbi.2015.09.017</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-8871-1979</orcidid><orcidid>https://orcid.org/0000-0002-9193-8998</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1532-0464
ispartof Journal of biomedical informatics, 2015-12, Vol.58, p.70-79
issn 1532-0464
1532-0480
language eng
recordid cdi_proquest_miscellaneous_1750433630
source MEDLINE; Elsevier ScienceDirect Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects Cluster Analysis
External collections
Information Storage and Retrieval
Language models
Models, Theoretical
Query expansion
title Cluster-based query expansion using external collections in medical information retrieval
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T14%3A32%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Cluster-based%20query%20expansion%20using%20external%20collections%20in%20medical%20information%20retrieval&rft.jtitle=Journal%20of%20biomedical%20informatics&rft.au=Oh,%20Heung-Seon&rft.date=2015-12&rft.volume=58&rft.spage=70&rft.epage=79&rft.pages=70-79&rft.issn=1532-0464&rft.eissn=1532-0480&rft_id=info:doi/10.1016/j.jbi.2015.09.017&rft_dat=%3Cproquest_cross%3E1750433630%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1750433630&rft_id=info:pmid/26429592&rft_els_id=S1532046415002117&rfr_iscdi=true