Ultraviolet Damage and Nucleosome Folding of the 5S Ribosomal RNA Gene

The Xenopus borealis somatic 5S ribosomal RNA gene was used as a model system to determine the mutual effects of nucleosome folding and formation of ultraviolet (UV) photoproducts (primarily cis−syn cyclobutane pyrimidine dimers, or CPDs) in chromatin. We analyzed the preferred rotational and transl...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biochemistry 2000-01, Vol.39 (3), p.557-566
Hauptverfasser: Liu, Xiaoqi, Mann, David B, Suquet, Christine, Springer, David L, Smerdon, Michael J
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 566
container_issue 3
container_start_page 557
container_title Biochemistry
container_volume 39
creator Liu, Xiaoqi
Mann, David B
Suquet, Christine
Springer, David L
Smerdon, Michael J
description The Xenopus borealis somatic 5S ribosomal RNA gene was used as a model system to determine the mutual effects of nucleosome folding and formation of ultraviolet (UV) photoproducts (primarily cis−syn cyclobutane pyrimidine dimers, or CPDs) in chromatin. We analyzed the preferred rotational and translational settings of 5S rDNA on the histone octamer surface after induction of up to 0.8 CPD/nucleosome core (2.5 kJ/m2 UV dose). DNase I and hydroxyl radical footprints indicate that UV damage at these levels does not affect the average rotational setting of the 5S rDNA molecules. Moreover, a combination of nuclease trimming and restriction enzyme digestion indicates the preferred translational positions of the histone octamer are not affected by this level of UV damage. We also did not observe differences in the UV damage patterns of irradiated 5S rDNA before or after nucleosome formation, indicating there is little difference in the inhibition of nucleosome folding by specific CPD sites in the 5S rRNA gene. Conversely, nucleosome folding significantly restricts CPD formation at all sites in the three helical turns of the nontranscribed strand located in the dyad axis region of the nucleosome, where DNA is bound exclusively by the histone H3−H4 tetramer. Finally, modulation of the CPD distribution in a 14 nt long pyrimidine tract correlates with its rotational setting on the histone surface, when the strong sequence bias for CPD formation in this tract is minimized by normalization. These results help establish the mutual roles of histone binding and UV photoproducts on their formation in chromatin.
doi_str_mv 10.1021/bi991771m
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_proquest_miscellaneous_17501841</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>17501841</sourcerecordid><originalsourceid>FETCH-LOGICAL-a408t-e2a3770f3c294b2195bb87b5e55beeebe8324b0937cdfddaa7a4328cb0f8be873</originalsourceid><addsrcrecordid>eNpt0FFL3TAUB_AwHPPO7WFfQAKygQ_dTtKkaR_luqsDcUOvsreQpKcabRttUtFvby8V8cGnw-H_4xz4E_KNwU8GnP2yvqqYUqz7QBZMcshEVcktsgCAIuNVAdvkc4w30ypAiU9km0EhOCthQVYXbRrMgw8tJnpoOnOF1PQ1PR1diyGGDukqtLXvr2hoaLpGKs_pmbebyLT07PSAHmGPX8jHxrQRv77MHXKx-r1eHmcnf4_-LA9OMiOgTBlykysFTe54JSxnlbS2VFailBYRLZY5FxaqXLm6qWtjlBE5L52FppxCle-QvfluiMnr6HxCd-1C36NLmkmAnLGN-jGruyHcjxiT7nx02LamxzBGzZQEVgo2wf0ZuiHEOGCj7wbfmeFJM9CbavVrtZPdfTk62g7rN3LucgLZDHxM-Piam-FWFypXUq__nevL5eXhslD_9Xry32dvXNQ3YRz6qbl3Hj8Du0-NQQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>17501841</pqid></control><display><type>article</type><title>Ultraviolet Damage and Nucleosome Folding of the 5S Ribosomal RNA Gene</title><source>MEDLINE</source><source>ACS Publications</source><creator>Liu, Xiaoqi ; Mann, David B ; Suquet, Christine ; Springer, David L ; Smerdon, Michael J</creator><creatorcontrib>Liu, Xiaoqi ; Mann, David B ; Suquet, Christine ; Springer, David L ; Smerdon, Michael J ; Pacific Northwest National Lab., Richland, WA (US)</creatorcontrib><description>The Xenopus borealis somatic 5S ribosomal RNA gene was used as a model system to determine the mutual effects of nucleosome folding and formation of ultraviolet (UV) photoproducts (primarily cis−syn cyclobutane pyrimidine dimers, or CPDs) in chromatin. We analyzed the preferred rotational and translational settings of 5S rDNA on the histone octamer surface after induction of up to 0.8 CPD/nucleosome core (2.5 kJ/m2 UV dose). DNase I and hydroxyl radical footprints indicate that UV damage at these levels does not affect the average rotational setting of the 5S rDNA molecules. Moreover, a combination of nuclease trimming and restriction enzyme digestion indicates the preferred translational positions of the histone octamer are not affected by this level of UV damage. We also did not observe differences in the UV damage patterns of irradiated 5S rDNA before or after nucleosome formation, indicating there is little difference in the inhibition of nucleosome folding by specific CPD sites in the 5S rRNA gene. Conversely, nucleosome folding significantly restricts CPD formation at all sites in the three helical turns of the nontranscribed strand located in the dyad axis region of the nucleosome, where DNA is bound exclusively by the histone H3−H4 tetramer. Finally, modulation of the CPD distribution in a 14 nt long pyrimidine tract correlates with its rotational setting on the histone surface, when the strong sequence bias for CPD formation in this tract is minimized by normalization. These results help establish the mutual roles of histone binding and UV photoproducts on their formation in chromatin.</description><identifier>ISSN: 0006-2960</identifier><identifier>EISSN: 1520-4995</identifier><identifier>DOI: 10.1021/bi991771m</identifier><identifier>PMID: 10642180</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Animals ; BASIC BIOLOGICAL SCIENCES ; CHROMATIN ; Chromatin - radiation effects ; cyclobutane pyrimidine dimers ; DIGESTION ; DISTRIBUTION ; DNA ; DNA, Ribosomal - genetics ; DNA, Ribosomal - radiation effects ; DNA-Directed DNA Polymerase ; Dose-Response Relationship, Radiation ; ENZYMES ; GENES ; HISTONES ; Histones - metabolism ; Histones - radiation effects ; Hydroxyl Radical - analysis ; HYDROXYL RADICALS ; INDUCTION ; MODULATION ; NUCLEASES ; NUCLEOSOMES ; Nucleosomes - genetics ; Nucleosomes - radiation effects ; PYRIMIDINE DIMERS ; PYRIMIDINES ; RIBOSOMAL RNA ; RNA, Ribosomal, 5S - genetics ; RNA, Ribosomal, 5S - radiation effects ; rRNA 5S ; Ultraviolet Rays ; Viral Proteins - metabolism ; Xenopus ; Xenopus borealis</subject><ispartof>Biochemistry, 2000-01, Vol.39 (3), p.557-566</ispartof><rights>Copyright © 2000 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a408t-e2a3770f3c294b2195bb87b5e55beeebe8324b0937cdfddaa7a4328cb0f8be873</citedby><cites>FETCH-LOGICAL-a408t-e2a3770f3c294b2195bb87b5e55beeebe8324b0937cdfddaa7a4328cb0f8be873</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/bi991771m$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/bi991771m$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,885,2763,27075,27923,27924,56737,56787</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/10642180$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/15003117$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Liu, Xiaoqi</creatorcontrib><creatorcontrib>Mann, David B</creatorcontrib><creatorcontrib>Suquet, Christine</creatorcontrib><creatorcontrib>Springer, David L</creatorcontrib><creatorcontrib>Smerdon, Michael J</creatorcontrib><creatorcontrib>Pacific Northwest National Lab., Richland, WA (US)</creatorcontrib><title>Ultraviolet Damage and Nucleosome Folding of the 5S Ribosomal RNA Gene</title><title>Biochemistry</title><addtitle>Biochemistry</addtitle><description>The Xenopus borealis somatic 5S ribosomal RNA gene was used as a model system to determine the mutual effects of nucleosome folding and formation of ultraviolet (UV) photoproducts (primarily cis−syn cyclobutane pyrimidine dimers, or CPDs) in chromatin. We analyzed the preferred rotational and translational settings of 5S rDNA on the histone octamer surface after induction of up to 0.8 CPD/nucleosome core (2.5 kJ/m2 UV dose). DNase I and hydroxyl radical footprints indicate that UV damage at these levels does not affect the average rotational setting of the 5S rDNA molecules. Moreover, a combination of nuclease trimming and restriction enzyme digestion indicates the preferred translational positions of the histone octamer are not affected by this level of UV damage. We also did not observe differences in the UV damage patterns of irradiated 5S rDNA before or after nucleosome formation, indicating there is little difference in the inhibition of nucleosome folding by specific CPD sites in the 5S rRNA gene. Conversely, nucleosome folding significantly restricts CPD formation at all sites in the three helical turns of the nontranscribed strand located in the dyad axis region of the nucleosome, where DNA is bound exclusively by the histone H3−H4 tetramer. Finally, modulation of the CPD distribution in a 14 nt long pyrimidine tract correlates with its rotational setting on the histone surface, when the strong sequence bias for CPD formation in this tract is minimized by normalization. These results help establish the mutual roles of histone binding and UV photoproducts on their formation in chromatin.</description><subject>Animals</subject><subject>BASIC BIOLOGICAL SCIENCES</subject><subject>CHROMATIN</subject><subject>Chromatin - radiation effects</subject><subject>cyclobutane pyrimidine dimers</subject><subject>DIGESTION</subject><subject>DISTRIBUTION</subject><subject>DNA</subject><subject>DNA, Ribosomal - genetics</subject><subject>DNA, Ribosomal - radiation effects</subject><subject>DNA-Directed DNA Polymerase</subject><subject>Dose-Response Relationship, Radiation</subject><subject>ENZYMES</subject><subject>GENES</subject><subject>HISTONES</subject><subject>Histones - metabolism</subject><subject>Histones - radiation effects</subject><subject>Hydroxyl Radical - analysis</subject><subject>HYDROXYL RADICALS</subject><subject>INDUCTION</subject><subject>MODULATION</subject><subject>NUCLEASES</subject><subject>NUCLEOSOMES</subject><subject>Nucleosomes - genetics</subject><subject>Nucleosomes - radiation effects</subject><subject>PYRIMIDINE DIMERS</subject><subject>PYRIMIDINES</subject><subject>RIBOSOMAL RNA</subject><subject>RNA, Ribosomal, 5S - genetics</subject><subject>RNA, Ribosomal, 5S - radiation effects</subject><subject>rRNA 5S</subject><subject>Ultraviolet Rays</subject><subject>Viral Proteins - metabolism</subject><subject>Xenopus</subject><subject>Xenopus borealis</subject><issn>0006-2960</issn><issn>1520-4995</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2000</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpt0FFL3TAUB_AwHPPO7WFfQAKygQ_dTtKkaR_luqsDcUOvsreQpKcabRttUtFvby8V8cGnw-H_4xz4E_KNwU8GnP2yvqqYUqz7QBZMcshEVcktsgCAIuNVAdvkc4w30ypAiU9km0EhOCthQVYXbRrMgw8tJnpoOnOF1PQ1PR1diyGGDukqtLXvr2hoaLpGKs_pmbebyLT07PSAHmGPX8jHxrQRv77MHXKx-r1eHmcnf4_-LA9OMiOgTBlykysFTe54JSxnlbS2VFailBYRLZY5FxaqXLm6qWtjlBE5L52FppxCle-QvfluiMnr6HxCd-1C36NLmkmAnLGN-jGruyHcjxiT7nx02LamxzBGzZQEVgo2wf0ZuiHEOGCj7wbfmeFJM9CbavVrtZPdfTk62g7rN3LucgLZDHxM-Piam-FWFypXUq__nevL5eXhslD_9Xry32dvXNQ3YRz6qbl3Hj8Du0-NQQ</recordid><startdate>20000125</startdate><enddate>20000125</enddate><creator>Liu, Xiaoqi</creator><creator>Mann, David B</creator><creator>Suquet, Christine</creator><creator>Springer, David L</creator><creator>Smerdon, Michael J</creator><general>American Chemical Society</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TM</scope><scope>OTOTI</scope></search><sort><creationdate>20000125</creationdate><title>Ultraviolet Damage and Nucleosome Folding of the 5S Ribosomal RNA Gene</title><author>Liu, Xiaoqi ; Mann, David B ; Suquet, Christine ; Springer, David L ; Smerdon, Michael J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a408t-e2a3770f3c294b2195bb87b5e55beeebe8324b0937cdfddaa7a4328cb0f8be873</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2000</creationdate><topic>Animals</topic><topic>BASIC BIOLOGICAL SCIENCES</topic><topic>CHROMATIN</topic><topic>Chromatin - radiation effects</topic><topic>cyclobutane pyrimidine dimers</topic><topic>DIGESTION</topic><topic>DISTRIBUTION</topic><topic>DNA</topic><topic>DNA, Ribosomal - genetics</topic><topic>DNA, Ribosomal - radiation effects</topic><topic>DNA-Directed DNA Polymerase</topic><topic>Dose-Response Relationship, Radiation</topic><topic>ENZYMES</topic><topic>GENES</topic><topic>HISTONES</topic><topic>Histones - metabolism</topic><topic>Histones - radiation effects</topic><topic>Hydroxyl Radical - analysis</topic><topic>HYDROXYL RADICALS</topic><topic>INDUCTION</topic><topic>MODULATION</topic><topic>NUCLEASES</topic><topic>NUCLEOSOMES</topic><topic>Nucleosomes - genetics</topic><topic>Nucleosomes - radiation effects</topic><topic>PYRIMIDINE DIMERS</topic><topic>PYRIMIDINES</topic><topic>RIBOSOMAL RNA</topic><topic>RNA, Ribosomal, 5S - genetics</topic><topic>RNA, Ribosomal, 5S - radiation effects</topic><topic>rRNA 5S</topic><topic>Ultraviolet Rays</topic><topic>Viral Proteins - metabolism</topic><topic>Xenopus</topic><topic>Xenopus borealis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Xiaoqi</creatorcontrib><creatorcontrib>Mann, David B</creatorcontrib><creatorcontrib>Suquet, Christine</creatorcontrib><creatorcontrib>Springer, David L</creatorcontrib><creatorcontrib>Smerdon, Michael J</creatorcontrib><creatorcontrib>Pacific Northwest National Lab., Richland, WA (US)</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Nucleic Acids Abstracts</collection><collection>OSTI.GOV</collection><jtitle>Biochemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Xiaoqi</au><au>Mann, David B</au><au>Suquet, Christine</au><au>Springer, David L</au><au>Smerdon, Michael J</au><aucorp>Pacific Northwest National Lab., Richland, WA (US)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Ultraviolet Damage and Nucleosome Folding of the 5S Ribosomal RNA Gene</atitle><jtitle>Biochemistry</jtitle><addtitle>Biochemistry</addtitle><date>2000-01-25</date><risdate>2000</risdate><volume>39</volume><issue>3</issue><spage>557</spage><epage>566</epage><pages>557-566</pages><issn>0006-2960</issn><eissn>1520-4995</eissn><abstract>The Xenopus borealis somatic 5S ribosomal RNA gene was used as a model system to determine the mutual effects of nucleosome folding and formation of ultraviolet (UV) photoproducts (primarily cis−syn cyclobutane pyrimidine dimers, or CPDs) in chromatin. We analyzed the preferred rotational and translational settings of 5S rDNA on the histone octamer surface after induction of up to 0.8 CPD/nucleosome core (2.5 kJ/m2 UV dose). DNase I and hydroxyl radical footprints indicate that UV damage at these levels does not affect the average rotational setting of the 5S rDNA molecules. Moreover, a combination of nuclease trimming and restriction enzyme digestion indicates the preferred translational positions of the histone octamer are not affected by this level of UV damage. We also did not observe differences in the UV damage patterns of irradiated 5S rDNA before or after nucleosome formation, indicating there is little difference in the inhibition of nucleosome folding by specific CPD sites in the 5S rRNA gene. Conversely, nucleosome folding significantly restricts CPD formation at all sites in the three helical turns of the nontranscribed strand located in the dyad axis region of the nucleosome, where DNA is bound exclusively by the histone H3−H4 tetramer. Finally, modulation of the CPD distribution in a 14 nt long pyrimidine tract correlates with its rotational setting on the histone surface, when the strong sequence bias for CPD formation in this tract is minimized by normalization. These results help establish the mutual roles of histone binding and UV photoproducts on their formation in chromatin.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>10642180</pmid><doi>10.1021/bi991771m</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0006-2960
ispartof Biochemistry, 2000-01, Vol.39 (3), p.557-566
issn 0006-2960
1520-4995
language eng
recordid cdi_proquest_miscellaneous_17501841
source MEDLINE; ACS Publications
subjects Animals
BASIC BIOLOGICAL SCIENCES
CHROMATIN
Chromatin - radiation effects
cyclobutane pyrimidine dimers
DIGESTION
DISTRIBUTION
DNA
DNA, Ribosomal - genetics
DNA, Ribosomal - radiation effects
DNA-Directed DNA Polymerase
Dose-Response Relationship, Radiation
ENZYMES
GENES
HISTONES
Histones - metabolism
Histones - radiation effects
Hydroxyl Radical - analysis
HYDROXYL RADICALS
INDUCTION
MODULATION
NUCLEASES
NUCLEOSOMES
Nucleosomes - genetics
Nucleosomes - radiation effects
PYRIMIDINE DIMERS
PYRIMIDINES
RIBOSOMAL RNA
RNA, Ribosomal, 5S - genetics
RNA, Ribosomal, 5S - radiation effects
rRNA 5S
Ultraviolet Rays
Viral Proteins - metabolism
Xenopus
Xenopus borealis
title Ultraviolet Damage and Nucleosome Folding of the 5S Ribosomal RNA Gene
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T04%3A28%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Ultraviolet%20Damage%20and%20Nucleosome%20Folding%20of%20the%205S%20Ribosomal%20RNA%20Gene&rft.jtitle=Biochemistry&rft.au=Liu,%20Xiaoqi&rft.aucorp=Pacific%20Northwest%20National%20Lab.,%20Richland,%20WA%20(US)&rft.date=2000-01-25&rft.volume=39&rft.issue=3&rft.spage=557&rft.epage=566&rft.pages=557-566&rft.issn=0006-2960&rft.eissn=1520-4995&rft_id=info:doi/10.1021/bi991771m&rft_dat=%3Cproquest_osti_%3E17501841%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=17501841&rft_id=info:pmid/10642180&rfr_iscdi=true