Integrated analysis of shotgun proteomic data with PatternLab for proteomics 4.0
This protocol describes PatternLab 4.0, an integrated software environment for the analysis of shotgun proteomics data. PatternLab for proteomics is an integrated computational environment that unifies several previously published modules for the analysis of shotgun proteomic data. The contained mod...
Gespeichert in:
Veröffentlicht in: | Nature protocols 2016-01, Vol.11 (1), p.102-117 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 117 |
---|---|
container_issue | 1 |
container_start_page | 102 |
container_title | Nature protocols |
container_volume | 11 |
creator | Carvalho, Paulo C Lima, Diogo B Leprevost, Felipe V Santos, Marlon D M Fischer, Juliana S G Aquino, Priscila F Moresco, James J Yates, John R Barbosa, Valmir C |
description | This protocol describes PatternLab 4.0, an integrated software environment for the analysis of shotgun proteomics data.
PatternLab for proteomics is an integrated computational environment that unifies several previously published modules for the analysis of shotgun proteomic data. The contained modules allow for formatting of sequence databases, peptide spectrum matching, statistical filtering and data organization, extracting quantitative information from label-free and chemically labeled data, and analyzing statistics for differential proteomics. PatternLab also has modules to perform similarity-driven studies with
de novo
sequencing data, to evaluate time-course experiments and to highlight the biological significance of data with regard to the Gene Ontology database. The PatternLab for proteomics 4.0 package brings together all of these modules in a self-contained software environment, which allows for complete proteomic data analysis and the display of results in a variety of graphical formats. All updates to PatternLab, including new features, have been previously tested on millions of mass spectra. PatternLab is easy to install, and it is freely available from
http://patternlabforproteomics.org
. |
doi_str_mv | 10.1038/nprot.2015.133 |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_1750013336</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A439834311</galeid><sourcerecordid>A439834311</sourcerecordid><originalsourceid>FETCH-LOGICAL-c532t-ff1693769e36c4118568da30eb66f970df9dd53112de336ab3af4163772d6353</originalsourceid><addsrcrecordid>eNp9ksFvFCEUxonR2Lp69Wgm8VIPMwUeA8OxaapusolN7Z2wA0ynmYUKTLT_vUxbrTWbhgPk8Xvfy_vyIfSe4IZg6I79TQy5oZi0DQF4gQ6JaHFNhZQv796spqSTB-hNStcYMwFcvEYHlPO2YwIfovO1z3aIOltTaa-n2zSmKrgqXYU8zL5a5G3YjX1ldNbVzzFfVec6Zxv9Rm8rF-IjkirW4LfoldNTsu8e7hW6_Hx2efq13nz7sj492dR9CzTXzhEuQXBpgfeMkK7lndGA7ZZzJwU2ThrTAiHUWACut6AdIxyEoIZDCyt0dC9bpv-YbcpqN6beTpP2NsxJLTbg4gjwgn78D70Ocyy7JkU56wBoC-w5iggmCScUd4_UoCerRu9CjrpfRqsTBrIrQoQUqtlDlWNssSl468ZSf9Lw6UlDYbL9lQc9p6TW3y_2ivcxpBStUzdx3Ol4qwhWSybUXSbUkgm1OLBCHx42m7c7a_7if0JQgON7IJUvP9j4z-r7JX8DI3G9tw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1749161208</pqid></control><display><type>article</type><title>Integrated analysis of shotgun proteomic data with PatternLab for proteomics 4.0</title><source>MEDLINE</source><source>Nature Journals Online</source><source>SpringerLink Journals - AutoHoldings</source><creator>Carvalho, Paulo C ; Lima, Diogo B ; Leprevost, Felipe V ; Santos, Marlon D M ; Fischer, Juliana S G ; Aquino, Priscila F ; Moresco, James J ; Yates, John R ; Barbosa, Valmir C</creator><creatorcontrib>Carvalho, Paulo C ; Lima, Diogo B ; Leprevost, Felipe V ; Santos, Marlon D M ; Fischer, Juliana S G ; Aquino, Priscila F ; Moresco, James J ; Yates, John R ; Barbosa, Valmir C</creatorcontrib><description>This protocol describes PatternLab 4.0, an integrated software environment for the analysis of shotgun proteomics data.
PatternLab for proteomics is an integrated computational environment that unifies several previously published modules for the analysis of shotgun proteomic data. The contained modules allow for formatting of sequence databases, peptide spectrum matching, statistical filtering and data organization, extracting quantitative information from label-free and chemically labeled data, and analyzing statistics for differential proteomics. PatternLab also has modules to perform similarity-driven studies with
de novo
sequencing data, to evaluate time-course experiments and to highlight the biological significance of data with regard to the Gene Ontology database. The PatternLab for proteomics 4.0 package brings together all of these modules in a self-contained software environment, which allows for complete proteomic data analysis and the display of results in a variety of graphical formats. All updates to PatternLab, including new features, have been previously tested on millions of mass spectra. PatternLab is easy to install, and it is freely available from
http://patternlabforproteomics.org
.</description><identifier>ISSN: 1754-2189</identifier><identifier>EISSN: 1750-2799</identifier><identifier>DOI: 10.1038/nprot.2015.133</identifier><identifier>PMID: 26658470</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>631/114/2784 ; 631/1647/2067 ; 631/45/475 ; 639/638/11/296 ; 82/58 ; Analytical Chemistry ; Biological Techniques ; Computational biology ; Computational Biology/Bioinformatics ; Computer applications ; Data analysis ; Databases, Protein ; Humans ; Innovations ; Integrated software ; Life Sciences ; Mass spectra ; Medical equipment ; Microarrays ; Modules ; Organic Chemistry ; Peptides - chemistry ; Peptides - metabolism ; Physiological apparatus ; Protein Processing, Post-Translational ; Proteomics ; Proteomics - methods ; protocol ; Shotguns ; Software ; Statistical analysis ; Systems Integration ; Tandem Mass Spectrometry ; Time Factors</subject><ispartof>Nature protocols, 2016-01, Vol.11 (1), p.102-117</ispartof><rights>Springer Nature Limited 2015</rights><rights>COPYRIGHT 2016 Nature Publishing Group</rights><rights>Copyright Nature Publishing Group Jan 2016</rights><rights>Nature Publishing Group, a division of Macmillan Publishers Limited. All Rights Reserved. 2015.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c532t-ff1693769e36c4118568da30eb66f970df9dd53112de336ab3af4163772d6353</citedby><cites>FETCH-LOGICAL-c532t-ff1693769e36c4118568da30eb66f970df9dd53112de336ab3af4163772d6353</cites><orcidid>0000-0002-8228-5374 ; 0000-0001-5267-1672 ; 0000-0003-1010-7170</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/nprot.2015.133$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/nprot.2015.133$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,777,781,27905,27906,41469,42538,51300</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26658470$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Carvalho, Paulo C</creatorcontrib><creatorcontrib>Lima, Diogo B</creatorcontrib><creatorcontrib>Leprevost, Felipe V</creatorcontrib><creatorcontrib>Santos, Marlon D M</creatorcontrib><creatorcontrib>Fischer, Juliana S G</creatorcontrib><creatorcontrib>Aquino, Priscila F</creatorcontrib><creatorcontrib>Moresco, James J</creatorcontrib><creatorcontrib>Yates, John R</creatorcontrib><creatorcontrib>Barbosa, Valmir C</creatorcontrib><title>Integrated analysis of shotgun proteomic data with PatternLab for proteomics 4.0</title><title>Nature protocols</title><addtitle>Nat Protoc</addtitle><addtitle>Nat Protoc</addtitle><description>This protocol describes PatternLab 4.0, an integrated software environment for the analysis of shotgun proteomics data.
PatternLab for proteomics is an integrated computational environment that unifies several previously published modules for the analysis of shotgun proteomic data. The contained modules allow for formatting of sequence databases, peptide spectrum matching, statistical filtering and data organization, extracting quantitative information from label-free and chemically labeled data, and analyzing statistics for differential proteomics. PatternLab also has modules to perform similarity-driven studies with
de novo
sequencing data, to evaluate time-course experiments and to highlight the biological significance of data with regard to the Gene Ontology database. The PatternLab for proteomics 4.0 package brings together all of these modules in a self-contained software environment, which allows for complete proteomic data analysis and the display of results in a variety of graphical formats. All updates to PatternLab, including new features, have been previously tested on millions of mass spectra. PatternLab is easy to install, and it is freely available from
http://patternlabforproteomics.org
.</description><subject>631/114/2784</subject><subject>631/1647/2067</subject><subject>631/45/475</subject><subject>639/638/11/296</subject><subject>82/58</subject><subject>Analytical Chemistry</subject><subject>Biological Techniques</subject><subject>Computational biology</subject><subject>Computational Biology/Bioinformatics</subject><subject>Computer applications</subject><subject>Data analysis</subject><subject>Databases, Protein</subject><subject>Humans</subject><subject>Innovations</subject><subject>Integrated software</subject><subject>Life Sciences</subject><subject>Mass spectra</subject><subject>Medical equipment</subject><subject>Microarrays</subject><subject>Modules</subject><subject>Organic Chemistry</subject><subject>Peptides - chemistry</subject><subject>Peptides - metabolism</subject><subject>Physiological apparatus</subject><subject>Protein Processing, Post-Translational</subject><subject>Proteomics</subject><subject>Proteomics - methods</subject><subject>protocol</subject><subject>Shotguns</subject><subject>Software</subject><subject>Statistical analysis</subject><subject>Systems Integration</subject><subject>Tandem Mass Spectrometry</subject><subject>Time Factors</subject><issn>1754-2189</issn><issn>1750-2799</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9ksFvFCEUxonR2Lp69Wgm8VIPMwUeA8OxaapusolN7Z2wA0ynmYUKTLT_vUxbrTWbhgPk8Xvfy_vyIfSe4IZg6I79TQy5oZi0DQF4gQ6JaHFNhZQv796spqSTB-hNStcYMwFcvEYHlPO2YwIfovO1z3aIOltTaa-n2zSmKrgqXYU8zL5a5G3YjX1ldNbVzzFfVec6Zxv9Rm8rF-IjkirW4LfoldNTsu8e7hW6_Hx2efq13nz7sj492dR9CzTXzhEuQXBpgfeMkK7lndGA7ZZzJwU2ThrTAiHUWACut6AdIxyEoIZDCyt0dC9bpv-YbcpqN6beTpP2NsxJLTbg4gjwgn78D70Ocyy7JkU56wBoC-w5iggmCScUd4_UoCerRu9CjrpfRqsTBrIrQoQUqtlDlWNssSl468ZSf9Lw6UlDYbL9lQc9p6TW3y_2ivcxpBStUzdx3Ol4qwhWSybUXSbUkgm1OLBCHx42m7c7a_7if0JQgON7IJUvP9j4z-r7JX8DI3G9tw</recordid><startdate>20160101</startdate><enddate>20160101</enddate><creator>Carvalho, Paulo C</creator><creator>Lima, Diogo B</creator><creator>Leprevost, Felipe V</creator><creator>Santos, Marlon D M</creator><creator>Fischer, Juliana S G</creator><creator>Aquino, Priscila F</creator><creator>Moresco, James J</creator><creator>Yates, John R</creator><creator>Barbosa, Valmir C</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7T5</scope><scope>7T7</scope><scope>7TM</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>P64</scope><scope>PATMY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-8228-5374</orcidid><orcidid>https://orcid.org/0000-0001-5267-1672</orcidid><orcidid>https://orcid.org/0000-0003-1010-7170</orcidid></search><sort><creationdate>20160101</creationdate><title>Integrated analysis of shotgun proteomic data with PatternLab for proteomics 4.0</title><author>Carvalho, Paulo C ; Lima, Diogo B ; Leprevost, Felipe V ; Santos, Marlon D M ; Fischer, Juliana S G ; Aquino, Priscila F ; Moresco, James J ; Yates, John R ; Barbosa, Valmir C</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c532t-ff1693769e36c4118568da30eb66f970df9dd53112de336ab3af4163772d6353</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>631/114/2784</topic><topic>631/1647/2067</topic><topic>631/45/475</topic><topic>639/638/11/296</topic><topic>82/58</topic><topic>Analytical Chemistry</topic><topic>Biological Techniques</topic><topic>Computational biology</topic><topic>Computational Biology/Bioinformatics</topic><topic>Computer applications</topic><topic>Data analysis</topic><topic>Databases, Protein</topic><topic>Humans</topic><topic>Innovations</topic><topic>Integrated software</topic><topic>Life Sciences</topic><topic>Mass spectra</topic><topic>Medical equipment</topic><topic>Microarrays</topic><topic>Modules</topic><topic>Organic Chemistry</topic><topic>Peptides - chemistry</topic><topic>Peptides - metabolism</topic><topic>Physiological apparatus</topic><topic>Protein Processing, Post-Translational</topic><topic>Proteomics</topic><topic>Proteomics - methods</topic><topic>protocol</topic><topic>Shotguns</topic><topic>Software</topic><topic>Statistical analysis</topic><topic>Systems Integration</topic><topic>Tandem Mass Spectrometry</topic><topic>Time Factors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Carvalho, Paulo C</creatorcontrib><creatorcontrib>Lima, Diogo B</creatorcontrib><creatorcontrib>Leprevost, Felipe V</creatorcontrib><creatorcontrib>Santos, Marlon D M</creatorcontrib><creatorcontrib>Fischer, Juliana S G</creatorcontrib><creatorcontrib>Aquino, Priscila F</creatorcontrib><creatorcontrib>Moresco, James J</creatorcontrib><creatorcontrib>Yates, John R</creatorcontrib><creatorcontrib>Barbosa, Valmir C</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Immunology Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Nucleic Acids Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Nature protocols</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Carvalho, Paulo C</au><au>Lima, Diogo B</au><au>Leprevost, Felipe V</au><au>Santos, Marlon D M</au><au>Fischer, Juliana S G</au><au>Aquino, Priscila F</au><au>Moresco, James J</au><au>Yates, John R</au><au>Barbosa, Valmir C</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Integrated analysis of shotgun proteomic data with PatternLab for proteomics 4.0</atitle><jtitle>Nature protocols</jtitle><stitle>Nat Protoc</stitle><addtitle>Nat Protoc</addtitle><date>2016-01-01</date><risdate>2016</risdate><volume>11</volume><issue>1</issue><spage>102</spage><epage>117</epage><pages>102-117</pages><issn>1754-2189</issn><eissn>1750-2799</eissn><abstract>This protocol describes PatternLab 4.0, an integrated software environment for the analysis of shotgun proteomics data.
PatternLab for proteomics is an integrated computational environment that unifies several previously published modules for the analysis of shotgun proteomic data. The contained modules allow for formatting of sequence databases, peptide spectrum matching, statistical filtering and data organization, extracting quantitative information from label-free and chemically labeled data, and analyzing statistics for differential proteomics. PatternLab also has modules to perform similarity-driven studies with
de novo
sequencing data, to evaluate time-course experiments and to highlight the biological significance of data with regard to the Gene Ontology database. The PatternLab for proteomics 4.0 package brings together all of these modules in a self-contained software environment, which allows for complete proteomic data analysis and the display of results in a variety of graphical formats. All updates to PatternLab, including new features, have been previously tested on millions of mass spectra. PatternLab is easy to install, and it is freely available from
http://patternlabforproteomics.org
.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>26658470</pmid><doi>10.1038/nprot.2015.133</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0002-8228-5374</orcidid><orcidid>https://orcid.org/0000-0001-5267-1672</orcidid><orcidid>https://orcid.org/0000-0003-1010-7170</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1754-2189 |
ispartof | Nature protocols, 2016-01, Vol.11 (1), p.102-117 |
issn | 1754-2189 1750-2799 |
language | eng |
recordid | cdi_proquest_miscellaneous_1750013336 |
source | MEDLINE; Nature Journals Online; SpringerLink Journals - AutoHoldings |
subjects | 631/114/2784 631/1647/2067 631/45/475 639/638/11/296 82/58 Analytical Chemistry Biological Techniques Computational biology Computational Biology/Bioinformatics Computer applications Data analysis Databases, Protein Humans Innovations Integrated software Life Sciences Mass spectra Medical equipment Microarrays Modules Organic Chemistry Peptides - chemistry Peptides - metabolism Physiological apparatus Protein Processing, Post-Translational Proteomics Proteomics - methods protocol Shotguns Software Statistical analysis Systems Integration Tandem Mass Spectrometry Time Factors |
title | Integrated analysis of shotgun proteomic data with PatternLab for proteomics 4.0 |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T01%3A28%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Integrated%20analysis%20of%20shotgun%20proteomic%20data%20with%20PatternLab%20for%20proteomics%204.0&rft.jtitle=Nature%20protocols&rft.au=Carvalho,%20Paulo%20C&rft.date=2016-01-01&rft.volume=11&rft.issue=1&rft.spage=102&rft.epage=117&rft.pages=102-117&rft.issn=1754-2189&rft.eissn=1750-2799&rft_id=info:doi/10.1038/nprot.2015.133&rft_dat=%3Cgale_proqu%3EA439834311%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1749161208&rft_id=info:pmid/26658470&rft_galeid=A439834311&rfr_iscdi=true |