Gain-of-Function Amino Acid Substitutions Drive Positive Selection of FGFR2 Mutations in Human Spermatogonia

Despite the importance of mutation in genetics, there are virtually no experimental data on the occurrence of specific nucleotide substitutions in human gametes. C>G transversions at position 755 of FGF receptor 2 (FGFR2) cause Apert syndrome; this mutation, encoding the gain-of-function substitu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the National Academy of Sciences - PNAS 2005-04, Vol.102 (17), p.6051-6056
Hauptverfasser: Goriely, Anne, Gilean A. T. Mc Vean, Ans M. M. van Pelt, O'Rourke, Anthony W., Wall, Steven A., de Rooij, Dirk G., Andrew O. M. Wilkie, Crow, James F.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 6056
container_issue 17
container_start_page 6051
container_title Proceedings of the National Academy of Sciences - PNAS
container_volume 102
creator Goriely, Anne
Gilean A. T. Mc Vean
Ans M. M. van Pelt
O'Rourke, Anthony W.
Wall, Steven A.
de Rooij, Dirk G.
Andrew O. M. Wilkie
Crow, James F.
description Despite the importance of mutation in genetics, there are virtually no experimental data on the occurrence of specific nucleotide substitutions in human gametes. C>G transversions at position 755 of FGF receptor 2 (FGFR2) cause Apert syndrome; this mutation, encoding the gain-of-function substitution Ser252Trp, occurs with a birth rate elevated 200- to 800-fold above background and originates exclusively from the unaffected father. We previously demonstrated high levels of both 755C>G and 755C>T FGFR2 mutations in human sperm and proposed that these particular mutations are enriched because the encoded proteins confer a selective advantage to spermatogonial cells. Here, we examine three corollaries of this hypothesis. First, we show that mutation levels at the adjacent FGFR2 nucleotides 752-754 are low, excluding any general increase in local mutation rate. Second, we present three instances of double-nucleotide changes involving 755C, expected to be extremely rare as chance events. Two of these double-nucleotide substitutions are shown, either by assessment of the pedigree or by direct analysis of sperm, to have arisen in sequential steps; the third (encoding Ser252Tyr) was predicted from structural considerations. Finally, we demonstrate that both major alternative spliceforms of FGFR2 (Fgfr2b and Fgfr2c) are expressed in rat spermatogonial stem cell lines. Taken together, these observations show that specific FGFR2 mutations attain high levels in sperm because they encode proteins with gain-of-function properties, favoring clonal expansion of mutant spermatogonial cells. Among FGFR2 mutations, those causing Apert syndrome may be especially prevalent because they enhance signaling by FGF ligands specific for each of the major expressed isoforms.
doi_str_mv 10.1073/pnas.0500267102
format Article
fullrecord <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_17491787</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>3375251</jstor_id><sourcerecordid>3375251</sourcerecordid><originalsourceid>FETCH-LOGICAL-c496t-eae20aae37df7190f03197bdac1a6d8b64afe8308b821070469423de232e1d233</originalsourceid><addsrcrecordid>eNp9kc1v1DAUxC0EokvhzAVBxAFxSfv8sbF9QVq17BapCMTC2XISp3iV2NvYruh_j6OsusCBk63n34zeeBB6ieEMA6fne6fDGSwBSMUxkEdogUHismISHqNFHvNSMMJO0LMQdgAglwKeohO8FAw4YQvUb7R1pe_KdXJNtN4Vq8E6X6wa2xbbVIdoY5rmobgc7Z0pvvpg43TZmt7MCt8V6836Gyk-p6hn1rriKg3aFdu9GQcd_Y13Vj9HTzrdB_PicJ6iH-uP3y-uyusvm08Xq-uyYbKKpdGGgNaG8rbjWEIHFEtet7rBumpFXTHdGUFB1ILkXwBWSUZoawglBreE0lP0Yfbdp3owbWNcHHWv9qMd9HivvLbq7xdnf6obf6cwCC4JzgbvDgajv00mRDXY0Ji-1874FBTmTGIueAbf_gPufBpdDqcIYMoFETJD5zPUjD6E0XQPm2BQU41qqlEda8yK138GOPKH3jLw5gBMyqMdyaupCpZThPf_J1SX-j6aXzGjr2Z0F6IfH1hK-ZJkp981RrtA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>201378289</pqid></control><display><type>article</type><title>Gain-of-Function Amino Acid Substitutions Drive Positive Selection of FGFR2 Mutations in Human Spermatogonia</title><source>MEDLINE</source><source>JSTOR Archive Collection A-Z Listing</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Goriely, Anne ; Gilean A. T. Mc Vean ; Ans M. M. van Pelt ; O'Rourke, Anthony W. ; Wall, Steven A. ; de Rooij, Dirk G. ; Andrew O. M. Wilkie ; Crow, James F.</creator><creatorcontrib>Goriely, Anne ; Gilean A. T. Mc Vean ; Ans M. M. van Pelt ; O'Rourke, Anthony W. ; Wall, Steven A. ; de Rooij, Dirk G. ; Andrew O. M. Wilkie ; Crow, James F.</creatorcontrib><description>Despite the importance of mutation in genetics, there are virtually no experimental data on the occurrence of specific nucleotide substitutions in human gametes. C&gt;G transversions at position 755 of FGF receptor 2 (FGFR2) cause Apert syndrome; this mutation, encoding the gain-of-function substitution Ser252Trp, occurs with a birth rate elevated 200- to 800-fold above background and originates exclusively from the unaffected father. We previously demonstrated high levels of both 755C&gt;G and 755C&gt;T FGFR2 mutations in human sperm and proposed that these particular mutations are enriched because the encoded proteins confer a selective advantage to spermatogonial cells. Here, we examine three corollaries of this hypothesis. First, we show that mutation levels at the adjacent FGFR2 nucleotides 752-754 are low, excluding any general increase in local mutation rate. Second, we present three instances of double-nucleotide changes involving 755C, expected to be extremely rare as chance events. Two of these double-nucleotide substitutions are shown, either by assessment of the pedigree or by direct analysis of sperm, to have arisen in sequential steps; the third (encoding Ser252Tyr) was predicted from structural considerations. Finally, we demonstrate that both major alternative spliceforms of FGFR2 (Fgfr2b and Fgfr2c) are expressed in rat spermatogonial stem cell lines. Taken together, these observations show that specific FGFR2 mutations attain high levels in sperm because they encode proteins with gain-of-function properties, favoring clonal expansion of mutant spermatogonial cells. Among FGFR2 mutations, those causing Apert syndrome may be especially prevalent because they enhance signaling by FGF ligands specific for each of the major expressed isoforms.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.0500267102</identifier><identifier>PMID: 15840724</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Acrocephalosyndactylia ; Acrocephalosyndactylia - genetics ; Alleles ; Amino Acid Substitution ; Amino acids ; Base Sequence ; Biological Sciences ; Cell lines ; DNA ; DNA Primers ; Exons ; Genetic Carrier Screening ; Genetic mutation ; Genetics ; Humans ; Ligands ; Male ; Mutagenesis, Site-Directed ; Mutation ; Nucleotides ; Polymerase Chain Reaction ; Polymorphism, Single Nucleotide - genetics ; Receptor Protein-Tyrosine Kinases - genetics ; Receptor, Fibroblast Growth Factor, Type 2 ; Receptors, Fibroblast Growth Factor - genetics ; Reproduction ; Spermatogonia - physiology ; Spermatozoa ; Stem cells</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2005-04, Vol.102 (17), p.6051-6056</ispartof><rights>Copyright 1993/2005 The National Academy of Sciences of the United States of America</rights><rights>Copyright National Academy of Sciences Apr 26, 2005</rights><rights>Copyright © 2005, The National Academy of Sciences 2005</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c496t-eae20aae37df7190f03197bdac1a6d8b64afe8308b821070469423de232e1d233</citedby><cites>FETCH-LOGICAL-c496t-eae20aae37df7190f03197bdac1a6d8b64afe8308b821070469423de232e1d233</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.pnas.org/content/102/17.cover.gif</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/3375251$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/3375251$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,727,780,784,803,885,27924,27925,53791,53793,58017,58250</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/15840724$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Goriely, Anne</creatorcontrib><creatorcontrib>Gilean A. T. Mc Vean</creatorcontrib><creatorcontrib>Ans M. M. van Pelt</creatorcontrib><creatorcontrib>O'Rourke, Anthony W.</creatorcontrib><creatorcontrib>Wall, Steven A.</creatorcontrib><creatorcontrib>de Rooij, Dirk G.</creatorcontrib><creatorcontrib>Andrew O. M. Wilkie</creatorcontrib><creatorcontrib>Crow, James F.</creatorcontrib><title>Gain-of-Function Amino Acid Substitutions Drive Positive Selection of FGFR2 Mutations in Human Spermatogonia</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>Despite the importance of mutation in genetics, there are virtually no experimental data on the occurrence of specific nucleotide substitutions in human gametes. C&gt;G transversions at position 755 of FGF receptor 2 (FGFR2) cause Apert syndrome; this mutation, encoding the gain-of-function substitution Ser252Trp, occurs with a birth rate elevated 200- to 800-fold above background and originates exclusively from the unaffected father. We previously demonstrated high levels of both 755C&gt;G and 755C&gt;T FGFR2 mutations in human sperm and proposed that these particular mutations are enriched because the encoded proteins confer a selective advantage to spermatogonial cells. Here, we examine three corollaries of this hypothesis. First, we show that mutation levels at the adjacent FGFR2 nucleotides 752-754 are low, excluding any general increase in local mutation rate. Second, we present three instances of double-nucleotide changes involving 755C, expected to be extremely rare as chance events. Two of these double-nucleotide substitutions are shown, either by assessment of the pedigree or by direct analysis of sperm, to have arisen in sequential steps; the third (encoding Ser252Tyr) was predicted from structural considerations. Finally, we demonstrate that both major alternative spliceforms of FGFR2 (Fgfr2b and Fgfr2c) are expressed in rat spermatogonial stem cell lines. Taken together, these observations show that specific FGFR2 mutations attain high levels in sperm because they encode proteins with gain-of-function properties, favoring clonal expansion of mutant spermatogonial cells. Among FGFR2 mutations, those causing Apert syndrome may be especially prevalent because they enhance signaling by FGF ligands specific for each of the major expressed isoforms.</description><subject>Acrocephalosyndactylia</subject><subject>Acrocephalosyndactylia - genetics</subject><subject>Alleles</subject><subject>Amino Acid Substitution</subject><subject>Amino acids</subject><subject>Base Sequence</subject><subject>Biological Sciences</subject><subject>Cell lines</subject><subject>DNA</subject><subject>DNA Primers</subject><subject>Exons</subject><subject>Genetic Carrier Screening</subject><subject>Genetic mutation</subject><subject>Genetics</subject><subject>Humans</subject><subject>Ligands</subject><subject>Male</subject><subject>Mutagenesis, Site-Directed</subject><subject>Mutation</subject><subject>Nucleotides</subject><subject>Polymerase Chain Reaction</subject><subject>Polymorphism, Single Nucleotide - genetics</subject><subject>Receptor Protein-Tyrosine Kinases - genetics</subject><subject>Receptor, Fibroblast Growth Factor, Type 2</subject><subject>Receptors, Fibroblast Growth Factor - genetics</subject><subject>Reproduction</subject><subject>Spermatogonia - physiology</subject><subject>Spermatozoa</subject><subject>Stem cells</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kc1v1DAUxC0EokvhzAVBxAFxSfv8sbF9QVq17BapCMTC2XISp3iV2NvYruh_j6OsusCBk63n34zeeBB6ieEMA6fne6fDGSwBSMUxkEdogUHismISHqNFHvNSMMJO0LMQdgAglwKeohO8FAw4YQvUb7R1pe_KdXJNtN4Vq8E6X6wa2xbbVIdoY5rmobgc7Z0pvvpg43TZmt7MCt8V6836Gyk-p6hn1rriKg3aFdu9GQcd_Y13Vj9HTzrdB_PicJ6iH-uP3y-uyusvm08Xq-uyYbKKpdGGgNaG8rbjWEIHFEtet7rBumpFXTHdGUFB1ILkXwBWSUZoawglBreE0lP0Yfbdp3owbWNcHHWv9qMd9HivvLbq7xdnf6obf6cwCC4JzgbvDgajv00mRDXY0Ji-1874FBTmTGIueAbf_gPufBpdDqcIYMoFETJD5zPUjD6E0XQPm2BQU41qqlEda8yK138GOPKH3jLw5gBMyqMdyaupCpZThPf_J1SX-j6aXzGjr2Z0F6IfH1hK-ZJkp981RrtA</recordid><startdate>20050426</startdate><enddate>20050426</enddate><creator>Goriely, Anne</creator><creator>Gilean A. T. Mc Vean</creator><creator>Ans M. M. van Pelt</creator><creator>O'Rourke, Anthony W.</creator><creator>Wall, Steven A.</creator><creator>de Rooij, Dirk G.</creator><creator>Andrew O. M. Wilkie</creator><creator>Crow, James F.</creator><general>National Academy of Sciences</general><general>National Acad Sciences</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>5PM</scope></search><sort><creationdate>20050426</creationdate><title>Gain-of-Function Amino Acid Substitutions Drive Positive Selection of FGFR2 Mutations in Human Spermatogonia</title><author>Goriely, Anne ; Gilean A. T. Mc Vean ; Ans M. M. van Pelt ; O'Rourke, Anthony W. ; Wall, Steven A. ; de Rooij, Dirk G. ; Andrew O. M. Wilkie ; Crow, James F.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c496t-eae20aae37df7190f03197bdac1a6d8b64afe8308b821070469423de232e1d233</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Acrocephalosyndactylia</topic><topic>Acrocephalosyndactylia - genetics</topic><topic>Alleles</topic><topic>Amino Acid Substitution</topic><topic>Amino acids</topic><topic>Base Sequence</topic><topic>Biological Sciences</topic><topic>Cell lines</topic><topic>DNA</topic><topic>DNA Primers</topic><topic>Exons</topic><topic>Genetic Carrier Screening</topic><topic>Genetic mutation</topic><topic>Genetics</topic><topic>Humans</topic><topic>Ligands</topic><topic>Male</topic><topic>Mutagenesis, Site-Directed</topic><topic>Mutation</topic><topic>Nucleotides</topic><topic>Polymerase Chain Reaction</topic><topic>Polymorphism, Single Nucleotide - genetics</topic><topic>Receptor Protein-Tyrosine Kinases - genetics</topic><topic>Receptor, Fibroblast Growth Factor, Type 2</topic><topic>Receptors, Fibroblast Growth Factor - genetics</topic><topic>Reproduction</topic><topic>Spermatogonia - physiology</topic><topic>Spermatozoa</topic><topic>Stem cells</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Goriely, Anne</creatorcontrib><creatorcontrib>Gilean A. T. Mc Vean</creatorcontrib><creatorcontrib>Ans M. M. van Pelt</creatorcontrib><creatorcontrib>O'Rourke, Anthony W.</creatorcontrib><creatorcontrib>Wall, Steven A.</creatorcontrib><creatorcontrib>de Rooij, Dirk G.</creatorcontrib><creatorcontrib>Andrew O. M. Wilkie</creatorcontrib><creatorcontrib>Crow, James F.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Goriely, Anne</au><au>Gilean A. T. Mc Vean</au><au>Ans M. M. van Pelt</au><au>O'Rourke, Anthony W.</au><au>Wall, Steven A.</au><au>de Rooij, Dirk G.</au><au>Andrew O. M. Wilkie</au><au>Crow, James F.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Gain-of-Function Amino Acid Substitutions Drive Positive Selection of FGFR2 Mutations in Human Spermatogonia</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2005-04-26</date><risdate>2005</risdate><volume>102</volume><issue>17</issue><spage>6051</spage><epage>6056</epage><pages>6051-6056</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>Despite the importance of mutation in genetics, there are virtually no experimental data on the occurrence of specific nucleotide substitutions in human gametes. C&gt;G transversions at position 755 of FGF receptor 2 (FGFR2) cause Apert syndrome; this mutation, encoding the gain-of-function substitution Ser252Trp, occurs with a birth rate elevated 200- to 800-fold above background and originates exclusively from the unaffected father. We previously demonstrated high levels of both 755C&gt;G and 755C&gt;T FGFR2 mutations in human sperm and proposed that these particular mutations are enriched because the encoded proteins confer a selective advantage to spermatogonial cells. Here, we examine three corollaries of this hypothesis. First, we show that mutation levels at the adjacent FGFR2 nucleotides 752-754 are low, excluding any general increase in local mutation rate. Second, we present three instances of double-nucleotide changes involving 755C, expected to be extremely rare as chance events. Two of these double-nucleotide substitutions are shown, either by assessment of the pedigree or by direct analysis of sperm, to have arisen in sequential steps; the third (encoding Ser252Tyr) was predicted from structural considerations. Finally, we demonstrate that both major alternative spliceforms of FGFR2 (Fgfr2b and Fgfr2c) are expressed in rat spermatogonial stem cell lines. Taken together, these observations show that specific FGFR2 mutations attain high levels in sperm because they encode proteins with gain-of-function properties, favoring clonal expansion of mutant spermatogonial cells. Among FGFR2 mutations, those causing Apert syndrome may be especially prevalent because they enhance signaling by FGF ligands specific for each of the major expressed isoforms.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>15840724</pmid><doi>10.1073/pnas.0500267102</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0027-8424
ispartof Proceedings of the National Academy of Sciences - PNAS, 2005-04, Vol.102 (17), p.6051-6056
issn 0027-8424
1091-6490
language eng
recordid cdi_proquest_miscellaneous_17491787
source MEDLINE; JSTOR Archive Collection A-Z Listing; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry
subjects Acrocephalosyndactylia
Acrocephalosyndactylia - genetics
Alleles
Amino Acid Substitution
Amino acids
Base Sequence
Biological Sciences
Cell lines
DNA
DNA Primers
Exons
Genetic Carrier Screening
Genetic mutation
Genetics
Humans
Ligands
Male
Mutagenesis, Site-Directed
Mutation
Nucleotides
Polymerase Chain Reaction
Polymorphism, Single Nucleotide - genetics
Receptor Protein-Tyrosine Kinases - genetics
Receptor, Fibroblast Growth Factor, Type 2
Receptors, Fibroblast Growth Factor - genetics
Reproduction
Spermatogonia - physiology
Spermatozoa
Stem cells
title Gain-of-Function Amino Acid Substitutions Drive Positive Selection of FGFR2 Mutations in Human Spermatogonia
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T16%3A08%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Gain-of-Function%20Amino%20Acid%20Substitutions%20Drive%20Positive%20Selection%20of%20FGFR2%20Mutations%20in%20Human%20Spermatogonia&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Goriely,%20Anne&rft.date=2005-04-26&rft.volume=102&rft.issue=17&rft.spage=6051&rft.epage=6056&rft.pages=6051-6056&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.0500267102&rft_dat=%3Cjstor_proqu%3E3375251%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=201378289&rft_id=info:pmid/15840724&rft_jstor_id=3375251&rfr_iscdi=true