Gain-of-Function Amino Acid Substitutions Drive Positive Selection of FGFR2 Mutations in Human Spermatogonia
Despite the importance of mutation in genetics, there are virtually no experimental data on the occurrence of specific nucleotide substitutions in human gametes. C>G transversions at position 755 of FGF receptor 2 (FGFR2) cause Apert syndrome; this mutation, encoding the gain-of-function substitu...
Gespeichert in:
Veröffentlicht in: | Proceedings of the National Academy of Sciences - PNAS 2005-04, Vol.102 (17), p.6051-6056 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 6056 |
---|---|
container_issue | 17 |
container_start_page | 6051 |
container_title | Proceedings of the National Academy of Sciences - PNAS |
container_volume | 102 |
creator | Goriely, Anne Gilean A. T. Mc Vean Ans M. M. van Pelt O'Rourke, Anthony W. Wall, Steven A. de Rooij, Dirk G. Andrew O. M. Wilkie Crow, James F. |
description | Despite the importance of mutation in genetics, there are virtually no experimental data on the occurrence of specific nucleotide substitutions in human gametes. C>G transversions at position 755 of FGF receptor 2 (FGFR2) cause Apert syndrome; this mutation, encoding the gain-of-function substitution Ser252Trp, occurs with a birth rate elevated 200- to 800-fold above background and originates exclusively from the unaffected father. We previously demonstrated high levels of both 755C>G and 755C>T FGFR2 mutations in human sperm and proposed that these particular mutations are enriched because the encoded proteins confer a selective advantage to spermatogonial cells. Here, we examine three corollaries of this hypothesis. First, we show that mutation levels at the adjacent FGFR2 nucleotides 752-754 are low, excluding any general increase in local mutation rate. Second, we present three instances of double-nucleotide changes involving 755C, expected to be extremely rare as chance events. Two of these double-nucleotide substitutions are shown, either by assessment of the pedigree or by direct analysis of sperm, to have arisen in sequential steps; the third (encoding Ser252Tyr) was predicted from structural considerations. Finally, we demonstrate that both major alternative spliceforms of FGFR2 (Fgfr2b and Fgfr2c) are expressed in rat spermatogonial stem cell lines. Taken together, these observations show that specific FGFR2 mutations attain high levels in sperm because they encode proteins with gain-of-function properties, favoring clonal expansion of mutant spermatogonial cells. Among FGFR2 mutations, those causing Apert syndrome may be especially prevalent because they enhance signaling by FGF ligands specific for each of the major expressed isoforms. |
doi_str_mv | 10.1073/pnas.0500267102 |
format | Article |
fullrecord | <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_17491787</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>3375251</jstor_id><sourcerecordid>3375251</sourcerecordid><originalsourceid>FETCH-LOGICAL-c496t-eae20aae37df7190f03197bdac1a6d8b64afe8308b821070469423de232e1d233</originalsourceid><addsrcrecordid>eNp9kc1v1DAUxC0EokvhzAVBxAFxSfv8sbF9QVq17BapCMTC2XISp3iV2NvYruh_j6OsusCBk63n34zeeBB6ieEMA6fne6fDGSwBSMUxkEdogUHismISHqNFHvNSMMJO0LMQdgAglwKeohO8FAw4YQvUb7R1pe_KdXJNtN4Vq8E6X6wa2xbbVIdoY5rmobgc7Z0pvvpg43TZmt7MCt8V6836Gyk-p6hn1rriKg3aFdu9GQcd_Y13Vj9HTzrdB_PicJ6iH-uP3y-uyusvm08Xq-uyYbKKpdGGgNaG8rbjWEIHFEtet7rBumpFXTHdGUFB1ILkXwBWSUZoawglBreE0lP0Yfbdp3owbWNcHHWv9qMd9HivvLbq7xdnf6obf6cwCC4JzgbvDgajv00mRDXY0Ji-1874FBTmTGIueAbf_gPufBpdDqcIYMoFETJD5zPUjD6E0XQPm2BQU41qqlEda8yK138GOPKH3jLw5gBMyqMdyaupCpZThPf_J1SX-j6aXzGjr2Z0F6IfH1hK-ZJkp981RrtA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>201378289</pqid></control><display><type>article</type><title>Gain-of-Function Amino Acid Substitutions Drive Positive Selection of FGFR2 Mutations in Human Spermatogonia</title><source>MEDLINE</source><source>JSTOR Archive Collection A-Z Listing</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Goriely, Anne ; Gilean A. T. Mc Vean ; Ans M. M. van Pelt ; O'Rourke, Anthony W. ; Wall, Steven A. ; de Rooij, Dirk G. ; Andrew O. M. Wilkie ; Crow, James F.</creator><creatorcontrib>Goriely, Anne ; Gilean A. T. Mc Vean ; Ans M. M. van Pelt ; O'Rourke, Anthony W. ; Wall, Steven A. ; de Rooij, Dirk G. ; Andrew O. M. Wilkie ; Crow, James F.</creatorcontrib><description>Despite the importance of mutation in genetics, there are virtually no experimental data on the occurrence of specific nucleotide substitutions in human gametes. C>G transversions at position 755 of FGF receptor 2 (FGFR2) cause Apert syndrome; this mutation, encoding the gain-of-function substitution Ser252Trp, occurs with a birth rate elevated 200- to 800-fold above background and originates exclusively from the unaffected father. We previously demonstrated high levels of both 755C>G and 755C>T FGFR2 mutations in human sperm and proposed that these particular mutations are enriched because the encoded proteins confer a selective advantage to spermatogonial cells. Here, we examine three corollaries of this hypothesis. First, we show that mutation levels at the adjacent FGFR2 nucleotides 752-754 are low, excluding any general increase in local mutation rate. Second, we present three instances of double-nucleotide changes involving 755C, expected to be extremely rare as chance events. Two of these double-nucleotide substitutions are shown, either by assessment of the pedigree or by direct analysis of sperm, to have arisen in sequential steps; the third (encoding Ser252Tyr) was predicted from structural considerations. Finally, we demonstrate that both major alternative spliceforms of FGFR2 (Fgfr2b and Fgfr2c) are expressed in rat spermatogonial stem cell lines. Taken together, these observations show that specific FGFR2 mutations attain high levels in sperm because they encode proteins with gain-of-function properties, favoring clonal expansion of mutant spermatogonial cells. Among FGFR2 mutations, those causing Apert syndrome may be especially prevalent because they enhance signaling by FGF ligands specific for each of the major expressed isoforms.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.0500267102</identifier><identifier>PMID: 15840724</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Acrocephalosyndactylia ; Acrocephalosyndactylia - genetics ; Alleles ; Amino Acid Substitution ; Amino acids ; Base Sequence ; Biological Sciences ; Cell lines ; DNA ; DNA Primers ; Exons ; Genetic Carrier Screening ; Genetic mutation ; Genetics ; Humans ; Ligands ; Male ; Mutagenesis, Site-Directed ; Mutation ; Nucleotides ; Polymerase Chain Reaction ; Polymorphism, Single Nucleotide - genetics ; Receptor Protein-Tyrosine Kinases - genetics ; Receptor, Fibroblast Growth Factor, Type 2 ; Receptors, Fibroblast Growth Factor - genetics ; Reproduction ; Spermatogonia - physiology ; Spermatozoa ; Stem cells</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2005-04, Vol.102 (17), p.6051-6056</ispartof><rights>Copyright 1993/2005 The National Academy of Sciences of the United States of America</rights><rights>Copyright National Academy of Sciences Apr 26, 2005</rights><rights>Copyright © 2005, The National Academy of Sciences 2005</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c496t-eae20aae37df7190f03197bdac1a6d8b64afe8308b821070469423de232e1d233</citedby><cites>FETCH-LOGICAL-c496t-eae20aae37df7190f03197bdac1a6d8b64afe8308b821070469423de232e1d233</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.pnas.org/content/102/17.cover.gif</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/3375251$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/3375251$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,727,780,784,803,885,27924,27925,53791,53793,58017,58250</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/15840724$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Goriely, Anne</creatorcontrib><creatorcontrib>Gilean A. T. Mc Vean</creatorcontrib><creatorcontrib>Ans M. M. van Pelt</creatorcontrib><creatorcontrib>O'Rourke, Anthony W.</creatorcontrib><creatorcontrib>Wall, Steven A.</creatorcontrib><creatorcontrib>de Rooij, Dirk G.</creatorcontrib><creatorcontrib>Andrew O. M. Wilkie</creatorcontrib><creatorcontrib>Crow, James F.</creatorcontrib><title>Gain-of-Function Amino Acid Substitutions Drive Positive Selection of FGFR2 Mutations in Human Spermatogonia</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>Despite the importance of mutation in genetics, there are virtually no experimental data on the occurrence of specific nucleotide substitutions in human gametes. C>G transversions at position 755 of FGF receptor 2 (FGFR2) cause Apert syndrome; this mutation, encoding the gain-of-function substitution Ser252Trp, occurs with a birth rate elevated 200- to 800-fold above background and originates exclusively from the unaffected father. We previously demonstrated high levels of both 755C>G and 755C>T FGFR2 mutations in human sperm and proposed that these particular mutations are enriched because the encoded proteins confer a selective advantage to spermatogonial cells. Here, we examine three corollaries of this hypothesis. First, we show that mutation levels at the adjacent FGFR2 nucleotides 752-754 are low, excluding any general increase in local mutation rate. Second, we present three instances of double-nucleotide changes involving 755C, expected to be extremely rare as chance events. Two of these double-nucleotide substitutions are shown, either by assessment of the pedigree or by direct analysis of sperm, to have arisen in sequential steps; the third (encoding Ser252Tyr) was predicted from structural considerations. Finally, we demonstrate that both major alternative spliceforms of FGFR2 (Fgfr2b and Fgfr2c) are expressed in rat spermatogonial stem cell lines. Taken together, these observations show that specific FGFR2 mutations attain high levels in sperm because they encode proteins with gain-of-function properties, favoring clonal expansion of mutant spermatogonial cells. Among FGFR2 mutations, those causing Apert syndrome may be especially prevalent because they enhance signaling by FGF ligands specific for each of the major expressed isoforms.</description><subject>Acrocephalosyndactylia</subject><subject>Acrocephalosyndactylia - genetics</subject><subject>Alleles</subject><subject>Amino Acid Substitution</subject><subject>Amino acids</subject><subject>Base Sequence</subject><subject>Biological Sciences</subject><subject>Cell lines</subject><subject>DNA</subject><subject>DNA Primers</subject><subject>Exons</subject><subject>Genetic Carrier Screening</subject><subject>Genetic mutation</subject><subject>Genetics</subject><subject>Humans</subject><subject>Ligands</subject><subject>Male</subject><subject>Mutagenesis, Site-Directed</subject><subject>Mutation</subject><subject>Nucleotides</subject><subject>Polymerase Chain Reaction</subject><subject>Polymorphism, Single Nucleotide - genetics</subject><subject>Receptor Protein-Tyrosine Kinases - genetics</subject><subject>Receptor, Fibroblast Growth Factor, Type 2</subject><subject>Receptors, Fibroblast Growth Factor - genetics</subject><subject>Reproduction</subject><subject>Spermatogonia - physiology</subject><subject>Spermatozoa</subject><subject>Stem cells</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kc1v1DAUxC0EokvhzAVBxAFxSfv8sbF9QVq17BapCMTC2XISp3iV2NvYruh_j6OsusCBk63n34zeeBB6ieEMA6fne6fDGSwBSMUxkEdogUHismISHqNFHvNSMMJO0LMQdgAglwKeohO8FAw4YQvUb7R1pe_KdXJNtN4Vq8E6X6wa2xbbVIdoY5rmobgc7Z0pvvpg43TZmt7MCt8V6836Gyk-p6hn1rriKg3aFdu9GQcd_Y13Vj9HTzrdB_PicJ6iH-uP3y-uyusvm08Xq-uyYbKKpdGGgNaG8rbjWEIHFEtet7rBumpFXTHdGUFB1ILkXwBWSUZoawglBreE0lP0Yfbdp3owbWNcHHWv9qMd9HivvLbq7xdnf6obf6cwCC4JzgbvDgajv00mRDXY0Ji-1874FBTmTGIueAbf_gPufBpdDqcIYMoFETJD5zPUjD6E0XQPm2BQU41qqlEda8yK138GOPKH3jLw5gBMyqMdyaupCpZThPf_J1SX-j6aXzGjr2Z0F6IfH1hK-ZJkp981RrtA</recordid><startdate>20050426</startdate><enddate>20050426</enddate><creator>Goriely, Anne</creator><creator>Gilean A. T. Mc Vean</creator><creator>Ans M. M. van Pelt</creator><creator>O'Rourke, Anthony W.</creator><creator>Wall, Steven A.</creator><creator>de Rooij, Dirk G.</creator><creator>Andrew O. M. Wilkie</creator><creator>Crow, James F.</creator><general>National Academy of Sciences</general><general>National Acad Sciences</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>5PM</scope></search><sort><creationdate>20050426</creationdate><title>Gain-of-Function Amino Acid Substitutions Drive Positive Selection of FGFR2 Mutations in Human Spermatogonia</title><author>Goriely, Anne ; Gilean A. T. Mc Vean ; Ans M. M. van Pelt ; O'Rourke, Anthony W. ; Wall, Steven A. ; de Rooij, Dirk G. ; Andrew O. M. Wilkie ; Crow, James F.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c496t-eae20aae37df7190f03197bdac1a6d8b64afe8308b821070469423de232e1d233</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Acrocephalosyndactylia</topic><topic>Acrocephalosyndactylia - genetics</topic><topic>Alleles</topic><topic>Amino Acid Substitution</topic><topic>Amino acids</topic><topic>Base Sequence</topic><topic>Biological Sciences</topic><topic>Cell lines</topic><topic>DNA</topic><topic>DNA Primers</topic><topic>Exons</topic><topic>Genetic Carrier Screening</topic><topic>Genetic mutation</topic><topic>Genetics</topic><topic>Humans</topic><topic>Ligands</topic><topic>Male</topic><topic>Mutagenesis, Site-Directed</topic><topic>Mutation</topic><topic>Nucleotides</topic><topic>Polymerase Chain Reaction</topic><topic>Polymorphism, Single Nucleotide - genetics</topic><topic>Receptor Protein-Tyrosine Kinases - genetics</topic><topic>Receptor, Fibroblast Growth Factor, Type 2</topic><topic>Receptors, Fibroblast Growth Factor - genetics</topic><topic>Reproduction</topic><topic>Spermatogonia - physiology</topic><topic>Spermatozoa</topic><topic>Stem cells</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Goriely, Anne</creatorcontrib><creatorcontrib>Gilean A. T. Mc Vean</creatorcontrib><creatorcontrib>Ans M. M. van Pelt</creatorcontrib><creatorcontrib>O'Rourke, Anthony W.</creatorcontrib><creatorcontrib>Wall, Steven A.</creatorcontrib><creatorcontrib>de Rooij, Dirk G.</creatorcontrib><creatorcontrib>Andrew O. M. Wilkie</creatorcontrib><creatorcontrib>Crow, James F.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Goriely, Anne</au><au>Gilean A. T. Mc Vean</au><au>Ans M. M. van Pelt</au><au>O'Rourke, Anthony W.</au><au>Wall, Steven A.</au><au>de Rooij, Dirk G.</au><au>Andrew O. M. Wilkie</au><au>Crow, James F.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Gain-of-Function Amino Acid Substitutions Drive Positive Selection of FGFR2 Mutations in Human Spermatogonia</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2005-04-26</date><risdate>2005</risdate><volume>102</volume><issue>17</issue><spage>6051</spage><epage>6056</epage><pages>6051-6056</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>Despite the importance of mutation in genetics, there are virtually no experimental data on the occurrence of specific nucleotide substitutions in human gametes. C>G transversions at position 755 of FGF receptor 2 (FGFR2) cause Apert syndrome; this mutation, encoding the gain-of-function substitution Ser252Trp, occurs with a birth rate elevated 200- to 800-fold above background and originates exclusively from the unaffected father. We previously demonstrated high levels of both 755C>G and 755C>T FGFR2 mutations in human sperm and proposed that these particular mutations are enriched because the encoded proteins confer a selective advantage to spermatogonial cells. Here, we examine three corollaries of this hypothesis. First, we show that mutation levels at the adjacent FGFR2 nucleotides 752-754 are low, excluding any general increase in local mutation rate. Second, we present three instances of double-nucleotide changes involving 755C, expected to be extremely rare as chance events. Two of these double-nucleotide substitutions are shown, either by assessment of the pedigree or by direct analysis of sperm, to have arisen in sequential steps; the third (encoding Ser252Tyr) was predicted from structural considerations. Finally, we demonstrate that both major alternative spliceforms of FGFR2 (Fgfr2b and Fgfr2c) are expressed in rat spermatogonial stem cell lines. Taken together, these observations show that specific FGFR2 mutations attain high levels in sperm because they encode proteins with gain-of-function properties, favoring clonal expansion of mutant spermatogonial cells. Among FGFR2 mutations, those causing Apert syndrome may be especially prevalent because they enhance signaling by FGF ligands specific for each of the major expressed isoforms.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>15840724</pmid><doi>10.1073/pnas.0500267102</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0027-8424 |
ispartof | Proceedings of the National Academy of Sciences - PNAS, 2005-04, Vol.102 (17), p.6051-6056 |
issn | 0027-8424 1091-6490 |
language | eng |
recordid | cdi_proquest_miscellaneous_17491787 |
source | MEDLINE; JSTOR Archive Collection A-Z Listing; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry |
subjects | Acrocephalosyndactylia Acrocephalosyndactylia - genetics Alleles Amino Acid Substitution Amino acids Base Sequence Biological Sciences Cell lines DNA DNA Primers Exons Genetic Carrier Screening Genetic mutation Genetics Humans Ligands Male Mutagenesis, Site-Directed Mutation Nucleotides Polymerase Chain Reaction Polymorphism, Single Nucleotide - genetics Receptor Protein-Tyrosine Kinases - genetics Receptor, Fibroblast Growth Factor, Type 2 Receptors, Fibroblast Growth Factor - genetics Reproduction Spermatogonia - physiology Spermatozoa Stem cells |
title | Gain-of-Function Amino Acid Substitutions Drive Positive Selection of FGFR2 Mutations in Human Spermatogonia |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T16%3A08%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Gain-of-Function%20Amino%20Acid%20Substitutions%20Drive%20Positive%20Selection%20of%20FGFR2%20Mutations%20in%20Human%20Spermatogonia&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Goriely,%20Anne&rft.date=2005-04-26&rft.volume=102&rft.issue=17&rft.spage=6051&rft.epage=6056&rft.pages=6051-6056&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.0500267102&rft_dat=%3Cjstor_proqu%3E3375251%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=201378289&rft_id=info:pmid/15840724&rft_jstor_id=3375251&rfr_iscdi=true |