Economic tradeoffs in mitigation, due to different atmospheric lifetimes of CO2 and black carbon
Tradeoffs are examined between mitigating black carbon (BC) and carbon dioxide (CO2) for limiting peak global mean warming, using the following set of methods. A two-box climate model is used to simulate temperatures of the atmosphere and ocean for different rates of mitigation. Mitigation rates for...
Gespeichert in:
Veröffentlicht in: | Ecological economics 2015-06, Vol.114, p.47-57 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 57 |
---|---|
container_issue | |
container_start_page | 47 |
container_title | Ecological economics |
container_volume | 114 |
creator | Seshadri, Ashwin K. |
description | Tradeoffs are examined between mitigating black carbon (BC) and carbon dioxide (CO2) for limiting peak global mean warming, using the following set of methods. A two-box climate model is used to simulate temperatures of the atmosphere and ocean for different rates of mitigation. Mitigation rates for BC and CO2 are characterized by respective timescales for e-folding reduction in emissions intensity of gross global product. There are respective emissions models that force the box model. Lastly there is a simple economics model, with cost of mitigation varying inversely with emission intensity.
Constant mitigation timescale corresponds to mitigation at a constant annual rate, for example an e-folding timescale of 40years corresponds to 2.5% reduction each year. Discounted present cost depends only on respective mitigation timescale and respective mitigation cost at present levels of emission intensity. Least-cost mitigation is posed as choosing respective e-folding timescales, to minimize total mitigation cost under a temperature constraint (e.g. within 2°C above preindustrial). Peak warming is more sensitive to mitigation timescale for CO2 than for BC. Therefore rapid mitigation of CO2 emission intensity is essential to limiting peak warming, but simultaneous mitigation of BC can reduce total mitigation expenditure. |
doi_str_mv | 10.1016/j.ecolecon.2015.03.004 |
format | Article |
fullrecord | <record><control><sourceid>proquest_elsev</sourceid><recordid>TN_cdi_proquest_miscellaneous_1748861773</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0921800915000889</els_id><sourcerecordid>1748861773</sourcerecordid><originalsourceid>FETCH-LOGICAL-e365t-e4781adbfc5b092d995494997a72fd6bd25db3a7a5b339aa4a39d841a6d8b90d3</originalsourceid><addsrcrecordid>eNqFkTtPwzAUhS0EEqXwF5BHBhLsOLHjDVTxkpC6wGz8uAaXxC6xy-8nFTAzXN3lO0dH-hA6p6SmhPKrTQ02DfPFuiG0qwmrCWkP0IL2glWcEn6IFkQ2tOoJkcfoJOcNIYRzyRbo9XbOpTFYXCbtIHmfcYh4DCW86RJSvMRuB7gk7IL3MEEsWJcx5e07THNqCB5KGCHj5PFq3WAdHTaDth_Y6smkeIqOvB4ynP3-JXq5u31ePVRP6_vH1c1TBYx3pYJW9FQ7421n5q1Oyq6VrZRCi8Y7blzTOcO00J1hTGrdaiZd31LNXW8kcWyJLn56t1P63EEuagzZwjDoCGmXFRVt33MqBPsf5bKTkgnWzej1Dwrz9K8Ak8o2QLTgwgS2KJeCokTtPaiN-vOg9h4UYWr2wL4B-zV_lQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1695993735</pqid></control><display><type>article</type><title>Economic tradeoffs in mitigation, due to different atmospheric lifetimes of CO2 and black carbon</title><source>Elsevier ScienceDirect Journals Complete</source><source>PAIS Index</source><creator>Seshadri, Ashwin K.</creator><creatorcontrib>Seshadri, Ashwin K.</creatorcontrib><description>Tradeoffs are examined between mitigating black carbon (BC) and carbon dioxide (CO2) for limiting peak global mean warming, using the following set of methods. A two-box climate model is used to simulate temperatures of the atmosphere and ocean for different rates of mitigation. Mitigation rates for BC and CO2 are characterized by respective timescales for e-folding reduction in emissions intensity of gross global product. There are respective emissions models that force the box model. Lastly there is a simple economics model, with cost of mitigation varying inversely with emission intensity.
Constant mitigation timescale corresponds to mitigation at a constant annual rate, for example an e-folding timescale of 40years corresponds to 2.5% reduction each year. Discounted present cost depends only on respective mitigation timescale and respective mitigation cost at present levels of emission intensity. Least-cost mitigation is posed as choosing respective e-folding timescales, to minimize total mitigation cost under a temperature constraint (e.g. within 2°C above preindustrial). Peak warming is more sensitive to mitigation timescale for CO2 than for BC. Therefore rapid mitigation of CO2 emission intensity is essential to limiting peak warming, but simultaneous mitigation of BC can reduce total mitigation expenditure.</description><identifier>ISSN: 0921-8009</identifier><identifier>EISSN: 1873-6106</identifier><identifier>DOI: 10.1016/j.ecolecon.2015.03.004</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Appropriations and expenditures ; Black carbon ; Blacks ; Carbon dioxide ; Carbon emissions ; Climate ; Climate change ; Climate change mitigation ; Cost ; Costs ; Economic models ; Expenditure ; Global climate change ; Global warming ; Mitigation timescales ; Mitigation tradeoffs ; Ocean</subject><ispartof>Ecological economics, 2015-06, Vol.114, p.47-57</ispartof><rights>2015 Elsevier B.V.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.ecolecon.2015.03.004$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3548,27863,27922,27923,45993</link.rule.ids></links><search><creatorcontrib>Seshadri, Ashwin K.</creatorcontrib><title>Economic tradeoffs in mitigation, due to different atmospheric lifetimes of CO2 and black carbon</title><title>Ecological economics</title><description>Tradeoffs are examined between mitigating black carbon (BC) and carbon dioxide (CO2) for limiting peak global mean warming, using the following set of methods. A two-box climate model is used to simulate temperatures of the atmosphere and ocean for different rates of mitigation. Mitigation rates for BC and CO2 are characterized by respective timescales for e-folding reduction in emissions intensity of gross global product. There are respective emissions models that force the box model. Lastly there is a simple economics model, with cost of mitigation varying inversely with emission intensity.
Constant mitigation timescale corresponds to mitigation at a constant annual rate, for example an e-folding timescale of 40years corresponds to 2.5% reduction each year. Discounted present cost depends only on respective mitigation timescale and respective mitigation cost at present levels of emission intensity. Least-cost mitigation is posed as choosing respective e-folding timescales, to minimize total mitigation cost under a temperature constraint (e.g. within 2°C above preindustrial). Peak warming is more sensitive to mitigation timescale for CO2 than for BC. Therefore rapid mitigation of CO2 emission intensity is essential to limiting peak warming, but simultaneous mitigation of BC can reduce total mitigation expenditure.</description><subject>Appropriations and expenditures</subject><subject>Black carbon</subject><subject>Blacks</subject><subject>Carbon dioxide</subject><subject>Carbon emissions</subject><subject>Climate</subject><subject>Climate change</subject><subject>Climate change mitigation</subject><subject>Cost</subject><subject>Costs</subject><subject>Economic models</subject><subject>Expenditure</subject><subject>Global climate change</subject><subject>Global warming</subject><subject>Mitigation timescales</subject><subject>Mitigation tradeoffs</subject><subject>Ocean</subject><issn>0921-8009</issn><issn>1873-6106</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>7TQ</sourceid><recordid>eNqFkTtPwzAUhS0EEqXwF5BHBhLsOLHjDVTxkpC6wGz8uAaXxC6xy-8nFTAzXN3lO0dH-hA6p6SmhPKrTQ02DfPFuiG0qwmrCWkP0IL2glWcEn6IFkQ2tOoJkcfoJOcNIYRzyRbo9XbOpTFYXCbtIHmfcYh4DCW86RJSvMRuB7gk7IL3MEEsWJcx5e07THNqCB5KGCHj5PFq3WAdHTaDth_Y6smkeIqOvB4ynP3-JXq5u31ePVRP6_vH1c1TBYx3pYJW9FQ7421n5q1Oyq6VrZRCi8Y7blzTOcO00J1hTGrdaiZd31LNXW8kcWyJLn56t1P63EEuagzZwjDoCGmXFRVt33MqBPsf5bKTkgnWzej1Dwrz9K8Ak8o2QLTgwgS2KJeCokTtPaiN-vOg9h4UYWr2wL4B-zV_lQ</recordid><startdate>201506</startdate><enddate>201506</enddate><creator>Seshadri, Ashwin K.</creator><general>Elsevier B.V</general><scope>8BJ</scope><scope>FQK</scope><scope>JBE</scope><scope>7TQ</scope><scope>DHY</scope><scope>DON</scope></search><sort><creationdate>201506</creationdate><title>Economic tradeoffs in mitigation, due to different atmospheric lifetimes of CO2 and black carbon</title><author>Seshadri, Ashwin K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-e365t-e4781adbfc5b092d995494997a72fd6bd25db3a7a5b339aa4a39d841a6d8b90d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Appropriations and expenditures</topic><topic>Black carbon</topic><topic>Blacks</topic><topic>Carbon dioxide</topic><topic>Carbon emissions</topic><topic>Climate</topic><topic>Climate change</topic><topic>Climate change mitigation</topic><topic>Cost</topic><topic>Costs</topic><topic>Economic models</topic><topic>Expenditure</topic><topic>Global climate change</topic><topic>Global warming</topic><topic>Mitigation timescales</topic><topic>Mitigation tradeoffs</topic><topic>Ocean</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Seshadri, Ashwin K.</creatorcontrib><collection>International Bibliography of the Social Sciences (IBSS)</collection><collection>International Bibliography of the Social Sciences</collection><collection>International Bibliography of the Social Sciences</collection><collection>PAIS Index</collection><collection>PAIS International</collection><collection>PAIS International (Ovid)</collection><jtitle>Ecological economics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Seshadri, Ashwin K.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Economic tradeoffs in mitigation, due to different atmospheric lifetimes of CO2 and black carbon</atitle><jtitle>Ecological economics</jtitle><date>2015-06</date><risdate>2015</risdate><volume>114</volume><spage>47</spage><epage>57</epage><pages>47-57</pages><issn>0921-8009</issn><eissn>1873-6106</eissn><abstract>Tradeoffs are examined between mitigating black carbon (BC) and carbon dioxide (CO2) for limiting peak global mean warming, using the following set of methods. A two-box climate model is used to simulate temperatures of the atmosphere and ocean for different rates of mitigation. Mitigation rates for BC and CO2 are characterized by respective timescales for e-folding reduction in emissions intensity of gross global product. There are respective emissions models that force the box model. Lastly there is a simple economics model, with cost of mitigation varying inversely with emission intensity.
Constant mitigation timescale corresponds to mitigation at a constant annual rate, for example an e-folding timescale of 40years corresponds to 2.5% reduction each year. Discounted present cost depends only on respective mitigation timescale and respective mitigation cost at present levels of emission intensity. Least-cost mitigation is posed as choosing respective e-folding timescales, to minimize total mitigation cost under a temperature constraint (e.g. within 2°C above preindustrial). Peak warming is more sensitive to mitigation timescale for CO2 than for BC. Therefore rapid mitigation of CO2 emission intensity is essential to limiting peak warming, but simultaneous mitigation of BC can reduce total mitigation expenditure.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.ecolecon.2015.03.004</doi><tpages>11</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0921-8009 |
ispartof | Ecological economics, 2015-06, Vol.114, p.47-57 |
issn | 0921-8009 1873-6106 |
language | eng |
recordid | cdi_proquest_miscellaneous_1748861773 |
source | Elsevier ScienceDirect Journals Complete; PAIS Index |
subjects | Appropriations and expenditures Black carbon Blacks Carbon dioxide Carbon emissions Climate Climate change Climate change mitigation Cost Costs Economic models Expenditure Global climate change Global warming Mitigation timescales Mitigation tradeoffs Ocean |
title | Economic tradeoffs in mitigation, due to different atmospheric lifetimes of CO2 and black carbon |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T11%3A23%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_elsev&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Economic%20tradeoffs%20in%20mitigation,%20due%20to%20different%20atmospheric%20lifetimes%20of%20CO2%20and%20black%20carbon&rft.jtitle=Ecological%20economics&rft.au=Seshadri,%20Ashwin%20K.&rft.date=2015-06&rft.volume=114&rft.spage=47&rft.epage=57&rft.pages=47-57&rft.issn=0921-8009&rft.eissn=1873-6106&rft_id=info:doi/10.1016/j.ecolecon.2015.03.004&rft_dat=%3Cproquest_elsev%3E1748861773%3C/proquest_elsev%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1695993735&rft_id=info:pmid/&rft_els_id=S0921800915000889&rfr_iscdi=true |