Economic tradeoffs in mitigation, due to different atmospheric lifetimes of CO2 and black carbon

Tradeoffs are examined between mitigating black carbon (BC) and carbon dioxide (CO2) for limiting peak global mean warming, using the following set of methods. A two-box climate model is used to simulate temperatures of the atmosphere and ocean for different rates of mitigation. Mitigation rates for...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Ecological economics 2015-06, Vol.114, p.47-57
1. Verfasser: Seshadri, Ashwin K.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 57
container_issue
container_start_page 47
container_title Ecological economics
container_volume 114
creator Seshadri, Ashwin K.
description Tradeoffs are examined between mitigating black carbon (BC) and carbon dioxide (CO2) for limiting peak global mean warming, using the following set of methods. A two-box climate model is used to simulate temperatures of the atmosphere and ocean for different rates of mitigation. Mitigation rates for BC and CO2 are characterized by respective timescales for e-folding reduction in emissions intensity of gross global product. There are respective emissions models that force the box model. Lastly there is a simple economics model, with cost of mitigation varying inversely with emission intensity. Constant mitigation timescale corresponds to mitigation at a constant annual rate, for example an e-folding timescale of 40years corresponds to 2.5% reduction each year. Discounted present cost depends only on respective mitigation timescale and respective mitigation cost at present levels of emission intensity. Least-cost mitigation is posed as choosing respective e-folding timescales, to minimize total mitigation cost under a temperature constraint (e.g. within 2°C above preindustrial). Peak warming is more sensitive to mitigation timescale for CO2 than for BC. Therefore rapid mitigation of CO2 emission intensity is essential to limiting peak warming, but simultaneous mitigation of BC can reduce total mitigation expenditure.
doi_str_mv 10.1016/j.ecolecon.2015.03.004
format Article
fullrecord <record><control><sourceid>proquest_elsev</sourceid><recordid>TN_cdi_proquest_miscellaneous_1748861773</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0921800915000889</els_id><sourcerecordid>1748861773</sourcerecordid><originalsourceid>FETCH-LOGICAL-e365t-e4781adbfc5b092d995494997a72fd6bd25db3a7a5b339aa4a39d841a6d8b90d3</originalsourceid><addsrcrecordid>eNqFkTtPwzAUhS0EEqXwF5BHBhLsOLHjDVTxkpC6wGz8uAaXxC6xy-8nFTAzXN3lO0dH-hA6p6SmhPKrTQ02DfPFuiG0qwmrCWkP0IL2glWcEn6IFkQ2tOoJkcfoJOcNIYRzyRbo9XbOpTFYXCbtIHmfcYh4DCW86RJSvMRuB7gk7IL3MEEsWJcx5e07THNqCB5KGCHj5PFq3WAdHTaDth_Y6smkeIqOvB4ynP3-JXq5u31ePVRP6_vH1c1TBYx3pYJW9FQ7421n5q1Oyq6VrZRCi8Y7blzTOcO00J1hTGrdaiZd31LNXW8kcWyJLn56t1P63EEuagzZwjDoCGmXFRVt33MqBPsf5bKTkgnWzej1Dwrz9K8Ak8o2QLTgwgS2KJeCokTtPaiN-vOg9h4UYWr2wL4B-zV_lQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1695993735</pqid></control><display><type>article</type><title>Economic tradeoffs in mitigation, due to different atmospheric lifetimes of CO2 and black carbon</title><source>Elsevier ScienceDirect Journals Complete</source><source>PAIS Index</source><creator>Seshadri, Ashwin K.</creator><creatorcontrib>Seshadri, Ashwin K.</creatorcontrib><description>Tradeoffs are examined between mitigating black carbon (BC) and carbon dioxide (CO2) for limiting peak global mean warming, using the following set of methods. A two-box climate model is used to simulate temperatures of the atmosphere and ocean for different rates of mitigation. Mitigation rates for BC and CO2 are characterized by respective timescales for e-folding reduction in emissions intensity of gross global product. There are respective emissions models that force the box model. Lastly there is a simple economics model, with cost of mitigation varying inversely with emission intensity. Constant mitigation timescale corresponds to mitigation at a constant annual rate, for example an e-folding timescale of 40years corresponds to 2.5% reduction each year. Discounted present cost depends only on respective mitigation timescale and respective mitigation cost at present levels of emission intensity. Least-cost mitigation is posed as choosing respective e-folding timescales, to minimize total mitigation cost under a temperature constraint (e.g. within 2°C above preindustrial). Peak warming is more sensitive to mitigation timescale for CO2 than for BC. Therefore rapid mitigation of CO2 emission intensity is essential to limiting peak warming, but simultaneous mitigation of BC can reduce total mitigation expenditure.</description><identifier>ISSN: 0921-8009</identifier><identifier>EISSN: 1873-6106</identifier><identifier>DOI: 10.1016/j.ecolecon.2015.03.004</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Appropriations and expenditures ; Black carbon ; Blacks ; Carbon dioxide ; Carbon emissions ; Climate ; Climate change ; Climate change mitigation ; Cost ; Costs ; Economic models ; Expenditure ; Global climate change ; Global warming ; Mitigation timescales ; Mitigation tradeoffs ; Ocean</subject><ispartof>Ecological economics, 2015-06, Vol.114, p.47-57</ispartof><rights>2015 Elsevier B.V.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.ecolecon.2015.03.004$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3548,27863,27922,27923,45993</link.rule.ids></links><search><creatorcontrib>Seshadri, Ashwin K.</creatorcontrib><title>Economic tradeoffs in mitigation, due to different atmospheric lifetimes of CO2 and black carbon</title><title>Ecological economics</title><description>Tradeoffs are examined between mitigating black carbon (BC) and carbon dioxide (CO2) for limiting peak global mean warming, using the following set of methods. A two-box climate model is used to simulate temperatures of the atmosphere and ocean for different rates of mitigation. Mitigation rates for BC and CO2 are characterized by respective timescales for e-folding reduction in emissions intensity of gross global product. There are respective emissions models that force the box model. Lastly there is a simple economics model, with cost of mitigation varying inversely with emission intensity. Constant mitigation timescale corresponds to mitigation at a constant annual rate, for example an e-folding timescale of 40years corresponds to 2.5% reduction each year. Discounted present cost depends only on respective mitigation timescale and respective mitigation cost at present levels of emission intensity. Least-cost mitigation is posed as choosing respective e-folding timescales, to minimize total mitigation cost under a temperature constraint (e.g. within 2°C above preindustrial). Peak warming is more sensitive to mitigation timescale for CO2 than for BC. Therefore rapid mitigation of CO2 emission intensity is essential to limiting peak warming, but simultaneous mitigation of BC can reduce total mitigation expenditure.</description><subject>Appropriations and expenditures</subject><subject>Black carbon</subject><subject>Blacks</subject><subject>Carbon dioxide</subject><subject>Carbon emissions</subject><subject>Climate</subject><subject>Climate change</subject><subject>Climate change mitigation</subject><subject>Cost</subject><subject>Costs</subject><subject>Economic models</subject><subject>Expenditure</subject><subject>Global climate change</subject><subject>Global warming</subject><subject>Mitigation timescales</subject><subject>Mitigation tradeoffs</subject><subject>Ocean</subject><issn>0921-8009</issn><issn>1873-6106</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>7TQ</sourceid><recordid>eNqFkTtPwzAUhS0EEqXwF5BHBhLsOLHjDVTxkpC6wGz8uAaXxC6xy-8nFTAzXN3lO0dH-hA6p6SmhPKrTQ02DfPFuiG0qwmrCWkP0IL2glWcEn6IFkQ2tOoJkcfoJOcNIYRzyRbo9XbOpTFYXCbtIHmfcYh4DCW86RJSvMRuB7gk7IL3MEEsWJcx5e07THNqCB5KGCHj5PFq3WAdHTaDth_Y6smkeIqOvB4ynP3-JXq5u31ePVRP6_vH1c1TBYx3pYJW9FQ7421n5q1Oyq6VrZRCi8Y7blzTOcO00J1hTGrdaiZd31LNXW8kcWyJLn56t1P63EEuagzZwjDoCGmXFRVt33MqBPsf5bKTkgnWzej1Dwrz9K8Ak8o2QLTgwgS2KJeCokTtPaiN-vOg9h4UYWr2wL4B-zV_lQ</recordid><startdate>201506</startdate><enddate>201506</enddate><creator>Seshadri, Ashwin K.</creator><general>Elsevier B.V</general><scope>8BJ</scope><scope>FQK</scope><scope>JBE</scope><scope>7TQ</scope><scope>DHY</scope><scope>DON</scope></search><sort><creationdate>201506</creationdate><title>Economic tradeoffs in mitigation, due to different atmospheric lifetimes of CO2 and black carbon</title><author>Seshadri, Ashwin K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-e365t-e4781adbfc5b092d995494997a72fd6bd25db3a7a5b339aa4a39d841a6d8b90d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Appropriations and expenditures</topic><topic>Black carbon</topic><topic>Blacks</topic><topic>Carbon dioxide</topic><topic>Carbon emissions</topic><topic>Climate</topic><topic>Climate change</topic><topic>Climate change mitigation</topic><topic>Cost</topic><topic>Costs</topic><topic>Economic models</topic><topic>Expenditure</topic><topic>Global climate change</topic><topic>Global warming</topic><topic>Mitigation timescales</topic><topic>Mitigation tradeoffs</topic><topic>Ocean</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Seshadri, Ashwin K.</creatorcontrib><collection>International Bibliography of the Social Sciences (IBSS)</collection><collection>International Bibliography of the Social Sciences</collection><collection>International Bibliography of the Social Sciences</collection><collection>PAIS Index</collection><collection>PAIS International</collection><collection>PAIS International (Ovid)</collection><jtitle>Ecological economics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Seshadri, Ashwin K.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Economic tradeoffs in mitigation, due to different atmospheric lifetimes of CO2 and black carbon</atitle><jtitle>Ecological economics</jtitle><date>2015-06</date><risdate>2015</risdate><volume>114</volume><spage>47</spage><epage>57</epage><pages>47-57</pages><issn>0921-8009</issn><eissn>1873-6106</eissn><abstract>Tradeoffs are examined between mitigating black carbon (BC) and carbon dioxide (CO2) for limiting peak global mean warming, using the following set of methods. A two-box climate model is used to simulate temperatures of the atmosphere and ocean for different rates of mitigation. Mitigation rates for BC and CO2 are characterized by respective timescales for e-folding reduction in emissions intensity of gross global product. There are respective emissions models that force the box model. Lastly there is a simple economics model, with cost of mitigation varying inversely with emission intensity. Constant mitigation timescale corresponds to mitigation at a constant annual rate, for example an e-folding timescale of 40years corresponds to 2.5% reduction each year. Discounted present cost depends only on respective mitigation timescale and respective mitigation cost at present levels of emission intensity. Least-cost mitigation is posed as choosing respective e-folding timescales, to minimize total mitigation cost under a temperature constraint (e.g. within 2°C above preindustrial). Peak warming is more sensitive to mitigation timescale for CO2 than for BC. Therefore rapid mitigation of CO2 emission intensity is essential to limiting peak warming, but simultaneous mitigation of BC can reduce total mitigation expenditure.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.ecolecon.2015.03.004</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0921-8009
ispartof Ecological economics, 2015-06, Vol.114, p.47-57
issn 0921-8009
1873-6106
language eng
recordid cdi_proquest_miscellaneous_1748861773
source Elsevier ScienceDirect Journals Complete; PAIS Index
subjects Appropriations and expenditures
Black carbon
Blacks
Carbon dioxide
Carbon emissions
Climate
Climate change
Climate change mitigation
Cost
Costs
Economic models
Expenditure
Global climate change
Global warming
Mitigation timescales
Mitigation tradeoffs
Ocean
title Economic tradeoffs in mitigation, due to different atmospheric lifetimes of CO2 and black carbon
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T11%3A23%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_elsev&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Economic%20tradeoffs%20in%20mitigation,%20due%20to%20different%20atmospheric%20lifetimes%20of%20CO2%20and%20black%20carbon&rft.jtitle=Ecological%20economics&rft.au=Seshadri,%20Ashwin%20K.&rft.date=2015-06&rft.volume=114&rft.spage=47&rft.epage=57&rft.pages=47-57&rft.issn=0921-8009&rft.eissn=1873-6106&rft_id=info:doi/10.1016/j.ecolecon.2015.03.004&rft_dat=%3Cproquest_elsev%3E1748861773%3C/proquest_elsev%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1695993735&rft_id=info:pmid/&rft_els_id=S0921800915000889&rfr_iscdi=true