Sensitivity to energy technology costs: A multi-model comparison analysis

In the present paper we use the output of multiple expert elicitation surveys on the future cost of key low-carbon technologies and use it as input of three Integrated Assessment models, GCAM, MARKAL_US and WITCH. By means of a large set of simulations we aim to assess the implications of these subj...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Energy Policy, 80:244-263 80:244-263, 2015-05, Vol.80, p.244-263
Hauptverfasser: Bosetti, Valentina, Marangoni, Giacomo, Borgonovo, Emanuele, Diaz Anadon, Laura, Barron, Robert, McJeon, Haewon C., Politis, Savvas, Friley, Paul
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 263
container_issue
container_start_page 244
container_title Energy Policy, 80:244-263
container_volume 80
creator Bosetti, Valentina
Marangoni, Giacomo
Borgonovo, Emanuele
Diaz Anadon, Laura
Barron, Robert
McJeon, Haewon C.
Politis, Savvas
Friley, Paul
description In the present paper we use the output of multiple expert elicitation surveys on the future cost of key low-carbon technologies and use it as input of three Integrated Assessment models, GCAM, MARKAL_US and WITCH. By means of a large set of simulations we aim to assess the implications of these subjective distributions of technological costs over key model outputs. We are able to detect what sources of technology uncertainty are more influential, how this differs across models, and whether and how results are affected by the time horizon, the metric considered or the stringency of the climate policy. In unconstrained emission scenarios, within the range of future technology performances considered in the present analysis, the cost of nuclear energy is shown to dominate all others in affecting future emissions. Climate-constrained scenarios, stress the relevance, in addition to that of nuclear energy, of biofuels, as they represent the main source of decarbonization of the transportation sector and bioenergy, since the latter can be coupled with Carbon Capture and Storage (CCS) to produce negative emissions. •Results of sensitivity analysis of energy technologies for three energy-economic models.•In-depth analysis of sign of change and key-uncertainty drivers in a multi-model context.•Report on robust findings on what uncertainty sources are key in shaping future emissions.•Use of alternative metrics for sensitivity analysis.•First integrated assessment model comparison to look at extensive sensitivity analysis of technology cost.
doi_str_mv 10.1016/j.enpol.2014.12.012
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_proquest_miscellaneous_1748861594</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0301421514006776</els_id><sourcerecordid>3621642941</sourcerecordid><originalsourceid>FETCH-LOGICAL-c638t-f8f48d35f99f0cc07ac7afd3f694f60d9f2cf3f6cddafedffda2a05fb39e972c3</originalsourceid><addsrcrecordid>eNqNkkuLFTEQhRtR8Dr6C9w0unHTbeXReQguhsHHwIALdR1iUtFcupNr0nfg_vtJz3XlQmdVVeGrQ3Fyuu4lgZEAEW_3I6ZDnkcKhI-EjkDoo25HlGSDkFI-7nbAgAyckulp96zWPQBwpfmuu_6KqcY13sb11K-5x4TlZ-vQ_Up5zq11ua71XX_ZL8d5jcOSPc7tcTnYEmtOvU12PtVYn3dPgp0rvvhTL7rvHz98u_o83Hz5dH11eTM4wdQ6BBW48mwKWgdwDqR10gbPgtA8CPA6UBfa5Ly3AX0I3lILU_jBNGpJHbvoXp11213RVBe3W11OCd1qCAUlQTfozRk6lPz7iHU1S6wO59kmzMdqiORKCTJp_n9UaMqarn6AqlBSqInAQ1QVA0UIoQ19_Re6z8fSXN0oQTmfqJSNYmfKlVxrwWAOJS62nAwBs4XA7M19CMwWgmaEgXvt9-ctbD9yG7FshmFy6GPZ_PI5_nP_DjGUu0Y</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1662445277</pqid></control><display><type>article</type><title>Sensitivity to energy technology costs: A multi-model comparison analysis</title><source>ScienceDirect Journals (5 years ago - present)</source><source>PAIS Index</source><creator>Bosetti, Valentina ; Marangoni, Giacomo ; Borgonovo, Emanuele ; Diaz Anadon, Laura ; Barron, Robert ; McJeon, Haewon C. ; Politis, Savvas ; Friley, Paul</creator><creatorcontrib>Bosetti, Valentina ; Marangoni, Giacomo ; Borgonovo, Emanuele ; Diaz Anadon, Laura ; Barron, Robert ; McJeon, Haewon C. ; Politis, Savvas ; Friley, Paul ; Pacific Northwest National Lab. (PNNL), Richland, WA (United States)</creatorcontrib><description>In the present paper we use the output of multiple expert elicitation surveys on the future cost of key low-carbon technologies and use it as input of three Integrated Assessment models, GCAM, MARKAL_US and WITCH. By means of a large set of simulations we aim to assess the implications of these subjective distributions of technological costs over key model outputs. We are able to detect what sources of technology uncertainty are more influential, how this differs across models, and whether and how results are affected by the time horizon, the metric considered or the stringency of the climate policy. In unconstrained emission scenarios, within the range of future technology performances considered in the present analysis, the cost of nuclear energy is shown to dominate all others in affecting future emissions. Climate-constrained scenarios, stress the relevance, in addition to that of nuclear energy, of biofuels, as they represent the main source of decarbonization of the transportation sector and bioenergy, since the latter can be coupled with Carbon Capture and Storage (CCS) to produce negative emissions. •Results of sensitivity analysis of energy technologies for three energy-economic models.•In-depth analysis of sign of change and key-uncertainty drivers in a multi-model context.•Report on robust findings on what uncertainty sources are key in shaping future emissions.•Use of alternative metrics for sensitivity analysis.•First integrated assessment model comparison to look at extensive sensitivity analysis of technology cost.</description><identifier>ISSN: 0301-4215</identifier><identifier>EISSN: 1873-6777</identifier><identifier>DOI: 10.1016/j.enpol.2014.12.012</identifier><identifier>CODEN: ENPYAC</identifier><language>eng</language><publisher>Kidlington: Elsevier Ltd</publisher><subject>Biofuels ; Biomass energy ; Carbon emissions ; Carbon sequestration ; Clean technology ; Climate ; climate change ; Comparative analysis ; Cost ; Costs ; Emission analysis ; Energy costs ; Environmental policy ; Expert elicitation ; integrated assessment ; Integrated Assessment Models ; Nuclear energy ; Nuclear engineering ; Nuclear power generation ; Nuclear reactor components ; Nuclear reactors ; Pollution control ; Sensitivity analysis ; Storage ; Studies ; Surveys ; Technology ; Technology cost ; Transportation ; uncertainty</subject><ispartof>Energy Policy, 80:244-263, 2015-05, Vol.80, p.244-263</ispartof><rights>2014 Elsevier Ltd</rights><rights>Copyright Elsevier Science Ltd. May 2015</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c638t-f8f48d35f99f0cc07ac7afd3f694f60d9f2cf3f6cddafedffda2a05fb39e972c3</citedby><cites>FETCH-LOGICAL-c638t-f8f48d35f99f0cc07ac7afd3f694f60d9f2cf3f6cddafedffda2a05fb39e972c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0301421514006776$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,881,3537,27842,27843,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/1208709$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Bosetti, Valentina</creatorcontrib><creatorcontrib>Marangoni, Giacomo</creatorcontrib><creatorcontrib>Borgonovo, Emanuele</creatorcontrib><creatorcontrib>Diaz Anadon, Laura</creatorcontrib><creatorcontrib>Barron, Robert</creatorcontrib><creatorcontrib>McJeon, Haewon C.</creatorcontrib><creatorcontrib>Politis, Savvas</creatorcontrib><creatorcontrib>Friley, Paul</creatorcontrib><creatorcontrib>Pacific Northwest National Lab. (PNNL), Richland, WA (United States)</creatorcontrib><title>Sensitivity to energy technology costs: A multi-model comparison analysis</title><title>Energy Policy, 80:244-263</title><description>In the present paper we use the output of multiple expert elicitation surveys on the future cost of key low-carbon technologies and use it as input of three Integrated Assessment models, GCAM, MARKAL_US and WITCH. By means of a large set of simulations we aim to assess the implications of these subjective distributions of technological costs over key model outputs. We are able to detect what sources of technology uncertainty are more influential, how this differs across models, and whether and how results are affected by the time horizon, the metric considered or the stringency of the climate policy. In unconstrained emission scenarios, within the range of future technology performances considered in the present analysis, the cost of nuclear energy is shown to dominate all others in affecting future emissions. Climate-constrained scenarios, stress the relevance, in addition to that of nuclear energy, of biofuels, as they represent the main source of decarbonization of the transportation sector and bioenergy, since the latter can be coupled with Carbon Capture and Storage (CCS) to produce negative emissions. •Results of sensitivity analysis of energy technologies for three energy-economic models.•In-depth analysis of sign of change and key-uncertainty drivers in a multi-model context.•Report on robust findings on what uncertainty sources are key in shaping future emissions.•Use of alternative metrics for sensitivity analysis.•First integrated assessment model comparison to look at extensive sensitivity analysis of technology cost.</description><subject>Biofuels</subject><subject>Biomass energy</subject><subject>Carbon emissions</subject><subject>Carbon sequestration</subject><subject>Clean technology</subject><subject>Climate</subject><subject>climate change</subject><subject>Comparative analysis</subject><subject>Cost</subject><subject>Costs</subject><subject>Emission analysis</subject><subject>Energy costs</subject><subject>Environmental policy</subject><subject>Expert elicitation</subject><subject>integrated assessment</subject><subject>Integrated Assessment Models</subject><subject>Nuclear energy</subject><subject>Nuclear engineering</subject><subject>Nuclear power generation</subject><subject>Nuclear reactor components</subject><subject>Nuclear reactors</subject><subject>Pollution control</subject><subject>Sensitivity analysis</subject><subject>Storage</subject><subject>Studies</subject><subject>Surveys</subject><subject>Technology</subject><subject>Technology cost</subject><subject>Transportation</subject><subject>uncertainty</subject><issn>0301-4215</issn><issn>1873-6777</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>7TQ</sourceid><recordid>eNqNkkuLFTEQhRtR8Dr6C9w0unHTbeXReQguhsHHwIALdR1iUtFcupNr0nfg_vtJz3XlQmdVVeGrQ3Fyuu4lgZEAEW_3I6ZDnkcKhI-EjkDoo25HlGSDkFI-7nbAgAyckulp96zWPQBwpfmuu_6KqcY13sb11K-5x4TlZ-vQ_Up5zq11ua71XX_ZL8d5jcOSPc7tcTnYEmtOvU12PtVYn3dPgp0rvvhTL7rvHz98u_o83Hz5dH11eTM4wdQ6BBW48mwKWgdwDqR10gbPgtA8CPA6UBfa5Ly3AX0I3lILU_jBNGpJHbvoXp11213RVBe3W11OCd1qCAUlQTfozRk6lPz7iHU1S6wO59kmzMdqiORKCTJp_n9UaMqarn6AqlBSqInAQ1QVA0UIoQ19_Re6z8fSXN0oQTmfqJSNYmfKlVxrwWAOJS62nAwBs4XA7M19CMwWgmaEgXvt9-ctbD9yG7FshmFy6GPZ_PI5_nP_DjGUu0Y</recordid><startdate>20150501</startdate><enddate>20150501</enddate><creator>Bosetti, Valentina</creator><creator>Marangoni, Giacomo</creator><creator>Borgonovo, Emanuele</creator><creator>Diaz Anadon, Laura</creator><creator>Barron, Robert</creator><creator>McJeon, Haewon C.</creator><creator>Politis, Savvas</creator><creator>Friley, Paul</creator><general>Elsevier Ltd</general><general>Elsevier Science Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TA</scope><scope>7TB</scope><scope>7TQ</scope><scope>8BJ</scope><scope>8FD</scope><scope>DHY</scope><scope>DON</scope><scope>F28</scope><scope>FQK</scope><scope>FR3</scope><scope>H8D</scope><scope>JBE</scope><scope>JG9</scope><scope>KR7</scope><scope>L7M</scope><scope>7ST</scope><scope>7U6</scope><scope>C1K</scope><scope>SOI</scope><scope>7SU</scope><scope>OTOTI</scope></search><sort><creationdate>20150501</creationdate><title>Sensitivity to energy technology costs: A multi-model comparison analysis</title><author>Bosetti, Valentina ; Marangoni, Giacomo ; Borgonovo, Emanuele ; Diaz Anadon, Laura ; Barron, Robert ; McJeon, Haewon C. ; Politis, Savvas ; Friley, Paul</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c638t-f8f48d35f99f0cc07ac7afd3f694f60d9f2cf3f6cddafedffda2a05fb39e972c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Biofuels</topic><topic>Biomass energy</topic><topic>Carbon emissions</topic><topic>Carbon sequestration</topic><topic>Clean technology</topic><topic>Climate</topic><topic>climate change</topic><topic>Comparative analysis</topic><topic>Cost</topic><topic>Costs</topic><topic>Emission analysis</topic><topic>Energy costs</topic><topic>Environmental policy</topic><topic>Expert elicitation</topic><topic>integrated assessment</topic><topic>Integrated Assessment Models</topic><topic>Nuclear energy</topic><topic>Nuclear engineering</topic><topic>Nuclear power generation</topic><topic>Nuclear reactor components</topic><topic>Nuclear reactors</topic><topic>Pollution control</topic><topic>Sensitivity analysis</topic><topic>Storage</topic><topic>Studies</topic><topic>Surveys</topic><topic>Technology</topic><topic>Technology cost</topic><topic>Transportation</topic><topic>uncertainty</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bosetti, Valentina</creatorcontrib><creatorcontrib>Marangoni, Giacomo</creatorcontrib><creatorcontrib>Borgonovo, Emanuele</creatorcontrib><creatorcontrib>Diaz Anadon, Laura</creatorcontrib><creatorcontrib>Barron, Robert</creatorcontrib><creatorcontrib>McJeon, Haewon C.</creatorcontrib><creatorcontrib>Politis, Savvas</creatorcontrib><creatorcontrib>Friley, Paul</creatorcontrib><creatorcontrib>Pacific Northwest National Lab. (PNNL), Richland, WA (United States)</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>PAIS Index</collection><collection>International Bibliography of the Social Sciences (IBSS)</collection><collection>Technology Research Database</collection><collection>PAIS International</collection><collection>PAIS International (Ovid)</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>International Bibliography of the Social Sciences</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>International Bibliography of the Social Sciences</collection><collection>Materials Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><collection>Sustainability Science Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Environment Abstracts</collection><collection>Environmental Engineering Abstracts</collection><collection>OSTI.GOV</collection><jtitle>Energy Policy, 80:244-263</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bosetti, Valentina</au><au>Marangoni, Giacomo</au><au>Borgonovo, Emanuele</au><au>Diaz Anadon, Laura</au><au>Barron, Robert</au><au>McJeon, Haewon C.</au><au>Politis, Savvas</au><au>Friley, Paul</au><aucorp>Pacific Northwest National Lab. (PNNL), Richland, WA (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Sensitivity to energy technology costs: A multi-model comparison analysis</atitle><jtitle>Energy Policy, 80:244-263</jtitle><date>2015-05-01</date><risdate>2015</risdate><volume>80</volume><spage>244</spage><epage>263</epage><pages>244-263</pages><issn>0301-4215</issn><eissn>1873-6777</eissn><coden>ENPYAC</coden><abstract>In the present paper we use the output of multiple expert elicitation surveys on the future cost of key low-carbon technologies and use it as input of three Integrated Assessment models, GCAM, MARKAL_US and WITCH. By means of a large set of simulations we aim to assess the implications of these subjective distributions of technological costs over key model outputs. We are able to detect what sources of technology uncertainty are more influential, how this differs across models, and whether and how results are affected by the time horizon, the metric considered or the stringency of the climate policy. In unconstrained emission scenarios, within the range of future technology performances considered in the present analysis, the cost of nuclear energy is shown to dominate all others in affecting future emissions. Climate-constrained scenarios, stress the relevance, in addition to that of nuclear energy, of biofuels, as they represent the main source of decarbonization of the transportation sector and bioenergy, since the latter can be coupled with Carbon Capture and Storage (CCS) to produce negative emissions. •Results of sensitivity analysis of energy technologies for three energy-economic models.•In-depth analysis of sign of change and key-uncertainty drivers in a multi-model context.•Report on robust findings on what uncertainty sources are key in shaping future emissions.•Use of alternative metrics for sensitivity analysis.•First integrated assessment model comparison to look at extensive sensitivity analysis of technology cost.</abstract><cop>Kidlington</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.enpol.2014.12.012</doi><tpages>20</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0301-4215
ispartof Energy Policy, 80:244-263, 2015-05, Vol.80, p.244-263
issn 0301-4215
1873-6777
language eng
recordid cdi_proquest_miscellaneous_1748861594
source ScienceDirect Journals (5 years ago - present); PAIS Index
subjects Biofuels
Biomass energy
Carbon emissions
Carbon sequestration
Clean technology
Climate
climate change
Comparative analysis
Cost
Costs
Emission analysis
Energy costs
Environmental policy
Expert elicitation
integrated assessment
Integrated Assessment Models
Nuclear energy
Nuclear engineering
Nuclear power generation
Nuclear reactor components
Nuclear reactors
Pollution control
Sensitivity analysis
Storage
Studies
Surveys
Technology
Technology cost
Transportation
uncertainty
title Sensitivity to energy technology costs: A multi-model comparison analysis
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T19%3A15%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Sensitivity%20to%20energy%20technology%20costs:%20A%20multi-model%20comparison%20analysis&rft.jtitle=Energy%20Policy,%2080:244-263&rft.au=Bosetti,%20Valentina&rft.aucorp=Pacific%20Northwest%20National%20Lab.%20(PNNL),%20Richland,%20WA%20(United%20States)&rft.date=2015-05-01&rft.volume=80&rft.spage=244&rft.epage=263&rft.pages=244-263&rft.issn=0301-4215&rft.eissn=1873-6777&rft.coden=ENPYAC&rft_id=info:doi/10.1016/j.enpol.2014.12.012&rft_dat=%3Cproquest_osti_%3E3621642941%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1662445277&rft_id=info:pmid/&rft_els_id=S0301421514006776&rfr_iscdi=true