Species comparison of hepatic and pulmonary metabolism of benzene
Benzene is an occupational hazard and environmental toxicant found in cigarette smoke, gasoline, and the chemical industry. The major health concern associated with benzene exposure is leukemia. Studies using microsomal preparations from human, mouse, rabbit, and rat to determine species differences...
Gespeichert in:
Veröffentlicht in: | Toxicology (Amsterdam) 1999-12, Vol.139 (3), p.207-217 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Benzene is an occupational hazard and environmental toxicant found in cigarette smoke, gasoline, and the chemical industry. The major health concern associated with benzene exposure is leukemia. Studies using microsomal preparations from human, mouse, rabbit, and rat to determine species differences in the metabolism of benzene to phenol, hydroquinone and catechol, indicate that the rat is most similar, both quantitatively and qualitatively, to the human in pulmonary microsomal metabolism of benzene. With hepatic microsomes, rat is most similar to human in metabolite formation at the two lower concentrations examined (24 and 200 μM), while at the two higher concentrations (700 and 1000 μM) mouse is most similar in phenol formation. In all species, the enzyme system responsible for benzene metabolism approached saturation in hepatic microsomes but not in pulmonary microsomes. In pulmonary microsomes from mouse, rat, and human, phenol appeared to competitively inhibit benzene metabolism resulting in a greater proportion of phenol being converted to hydroquinone when the benzene concentration increased. The opposite effect was seen in hepatic microsomes. These findings support the hypothesis that the lung plays an important role in benzene metabolism, and therefore, toxicity. |
---|---|
ISSN: | 0300-483X 1879-3185 |
DOI: | 10.1016/S0300-483X(99)00134-1 |