Squeeze-out dynamics of nanoconfined water: A detailed nanomechanical study

In this study, we present a detailed analysis of the squeeze-out dynamics of nanoconfined water confined between two hydrophilic surfaces measured by small-amplitude dynamic atomic force microscopy. Explicitly considering the instantaneous tip-surface separation during squeeze-out, we confirm the ex...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review. E, Statistical, nonlinear, and soft matter physics Statistical, nonlinear, and soft matter physics, 2015-10, Vol.92 (4), p.042403-042403, Article 042403
Hauptverfasser: Khan, Shah H, Hoffmann, Peter M
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 042403
container_issue 4
container_start_page 042403
container_title Physical review. E, Statistical, nonlinear, and soft matter physics
container_volume 92
creator Khan, Shah H
Hoffmann, Peter M
description In this study, we present a detailed analysis of the squeeze-out dynamics of nanoconfined water confined between two hydrophilic surfaces measured by small-amplitude dynamic atomic force microscopy. Explicitly considering the instantaneous tip-surface separation during squeeze-out, we confirm the existence of an adsorbed molecular water layer on mica and at least two hydration layers. We also confirm the previous observation of a sharp transition in the viscoelastic response of the nanoconfined water as the compression rate is increased beyond a critical value (previously determined to be about 0.8 nm/s). We find that below the critical value, the tip passes smoothly through the molecular layers of the film, while above the critical speed, the tip encounters "pinning" at separations where the film is able to temporarily order. Preordering of the film is accompanied by increased force fluctuations, which lead to increased damping preceding a peak in the film stiffness once ordering is completed. We analyze the data using both Kelvin-Voigt and Maxwell viscoelastic models. This provides a complementary picture of the viscoelastic response of the confined water film.
doi_str_mv 10.1103/PhysRevE.92.042403
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1747327285</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1747327285</sourcerecordid><originalsourceid>FETCH-LOGICAL-c347t-3c7bfef483799a1a913f081fa48afc08e61bc88e6e5e6479ac5c1fbcc14d462f3</originalsourceid><addsrcrecordid>eNo9kEtPwzAQhC0EoqXwBzigHLkk2F47TrhVVXmISiAeZ8tx1mpQHiVOQOHXk6otp1ntzoxWHyGXjEaMUbh5WQ_-Fb-XUcojKrigcESmTEoaclDx8XaGNAQl5YScef9JKXBIxCmZ8FjGkkuYkqe3rx7xF8Om74J8qE1VWB80LqhN3dimdkWNefBjOmxvg3mQY2eKctxszxXatakLa8rAd30-nJMTZ0qPF3udkY-75fviIVw93z8u5qvQglBdCFZlDp1IQKWpYSZl4GjCnBGJcZYmGLPMJqOgxFio1FhpmcusZSIXMXcwI9e73k3bjN_7TleFt1iWpsam95opoYArnsjRyndW2zbet-j0pi0q0w6aUb2FqA8Qdcr1DuIYutr391mF-X_kQA3-ABm8cAo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1747327285</pqid></control><display><type>article</type><title>Squeeze-out dynamics of nanoconfined water: A detailed nanomechanical study</title><source>MEDLINE</source><source>American Physical Society Journals</source><creator>Khan, Shah H ; Hoffmann, Peter M</creator><creatorcontrib>Khan, Shah H ; Hoffmann, Peter M</creatorcontrib><description>In this study, we present a detailed analysis of the squeeze-out dynamics of nanoconfined water confined between two hydrophilic surfaces measured by small-amplitude dynamic atomic force microscopy. Explicitly considering the instantaneous tip-surface separation during squeeze-out, we confirm the existence of an adsorbed molecular water layer on mica and at least two hydration layers. We also confirm the previous observation of a sharp transition in the viscoelastic response of the nanoconfined water as the compression rate is increased beyond a critical value (previously determined to be about 0.8 nm/s). We find that below the critical value, the tip passes smoothly through the molecular layers of the film, while above the critical speed, the tip encounters "pinning" at separations where the film is able to temporarily order. Preordering of the film is accompanied by increased force fluctuations, which lead to increased damping preceding a peak in the film stiffness once ordering is completed. We analyze the data using both Kelvin-Voigt and Maxwell viscoelastic models. This provides a complementary picture of the viscoelastic response of the confined water film.</description><identifier>ISSN: 1539-3755</identifier><identifier>EISSN: 1550-2376</identifier><identifier>DOI: 10.1103/PhysRevE.92.042403</identifier><identifier>PMID: 26565253</identifier><language>eng</language><publisher>United States</publisher><subject>Hydrodynamics ; Mechanical Phenomena ; Models, Theoretical ; Nanotechnology ; Water</subject><ispartof>Physical review. E, Statistical, nonlinear, and soft matter physics, 2015-10, Vol.92 (4), p.042403-042403, Article 042403</ispartof><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c347t-3c7bfef483799a1a913f081fa48afc08e61bc88e6e5e6479ac5c1fbcc14d462f3</citedby><cites>FETCH-LOGICAL-c347t-3c7bfef483799a1a913f081fa48afc08e61bc88e6e5e6479ac5c1fbcc14d462f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,2876,2877,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26565253$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Khan, Shah H</creatorcontrib><creatorcontrib>Hoffmann, Peter M</creatorcontrib><title>Squeeze-out dynamics of nanoconfined water: A detailed nanomechanical study</title><title>Physical review. E, Statistical, nonlinear, and soft matter physics</title><addtitle>Phys Rev E Stat Nonlin Soft Matter Phys</addtitle><description>In this study, we present a detailed analysis of the squeeze-out dynamics of nanoconfined water confined between two hydrophilic surfaces measured by small-amplitude dynamic atomic force microscopy. Explicitly considering the instantaneous tip-surface separation during squeeze-out, we confirm the existence of an adsorbed molecular water layer on mica and at least two hydration layers. We also confirm the previous observation of a sharp transition in the viscoelastic response of the nanoconfined water as the compression rate is increased beyond a critical value (previously determined to be about 0.8 nm/s). We find that below the critical value, the tip passes smoothly through the molecular layers of the film, while above the critical speed, the tip encounters "pinning" at separations where the film is able to temporarily order. Preordering of the film is accompanied by increased force fluctuations, which lead to increased damping preceding a peak in the film stiffness once ordering is completed. We analyze the data using both Kelvin-Voigt and Maxwell viscoelastic models. This provides a complementary picture of the viscoelastic response of the confined water film.</description><subject>Hydrodynamics</subject><subject>Mechanical Phenomena</subject><subject>Models, Theoretical</subject><subject>Nanotechnology</subject><subject>Water</subject><issn>1539-3755</issn><issn>1550-2376</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNo9kEtPwzAQhC0EoqXwBzigHLkk2F47TrhVVXmISiAeZ8tx1mpQHiVOQOHXk6otp1ntzoxWHyGXjEaMUbh5WQ_-Fb-XUcojKrigcESmTEoaclDx8XaGNAQl5YScef9JKXBIxCmZ8FjGkkuYkqe3rx7xF8Om74J8qE1VWB80LqhN3dimdkWNefBjOmxvg3mQY2eKctxszxXatakLa8rAd30-nJMTZ0qPF3udkY-75fviIVw93z8u5qvQglBdCFZlDp1IQKWpYSZl4GjCnBGJcZYmGLPMJqOgxFio1FhpmcusZSIXMXcwI9e73k3bjN_7TleFt1iWpsam95opoYArnsjRyndW2zbet-j0pi0q0w6aUb2FqA8Qdcr1DuIYutr391mF-X_kQA3-ABm8cAo</recordid><startdate>201510</startdate><enddate>201510</enddate><creator>Khan, Shah H</creator><creator>Hoffmann, Peter M</creator><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>201510</creationdate><title>Squeeze-out dynamics of nanoconfined water: A detailed nanomechanical study</title><author>Khan, Shah H ; Hoffmann, Peter M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c347t-3c7bfef483799a1a913f081fa48afc08e61bc88e6e5e6479ac5c1fbcc14d462f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Hydrodynamics</topic><topic>Mechanical Phenomena</topic><topic>Models, Theoretical</topic><topic>Nanotechnology</topic><topic>Water</topic><toplevel>online_resources</toplevel><creatorcontrib>Khan, Shah H</creatorcontrib><creatorcontrib>Hoffmann, Peter M</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Physical review. E, Statistical, nonlinear, and soft matter physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Khan, Shah H</au><au>Hoffmann, Peter M</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Squeeze-out dynamics of nanoconfined water: A detailed nanomechanical study</atitle><jtitle>Physical review. E, Statistical, nonlinear, and soft matter physics</jtitle><addtitle>Phys Rev E Stat Nonlin Soft Matter Phys</addtitle><date>2015-10</date><risdate>2015</risdate><volume>92</volume><issue>4</issue><spage>042403</spage><epage>042403</epage><pages>042403-042403</pages><artnum>042403</artnum><issn>1539-3755</issn><eissn>1550-2376</eissn><abstract>In this study, we present a detailed analysis of the squeeze-out dynamics of nanoconfined water confined between two hydrophilic surfaces measured by small-amplitude dynamic atomic force microscopy. Explicitly considering the instantaneous tip-surface separation during squeeze-out, we confirm the existence of an adsorbed molecular water layer on mica and at least two hydration layers. We also confirm the previous observation of a sharp transition in the viscoelastic response of the nanoconfined water as the compression rate is increased beyond a critical value (previously determined to be about 0.8 nm/s). We find that below the critical value, the tip passes smoothly through the molecular layers of the film, while above the critical speed, the tip encounters "pinning" at separations where the film is able to temporarily order. Preordering of the film is accompanied by increased force fluctuations, which lead to increased damping preceding a peak in the film stiffness once ordering is completed. We analyze the data using both Kelvin-Voigt and Maxwell viscoelastic models. This provides a complementary picture of the viscoelastic response of the confined water film.</abstract><cop>United States</cop><pmid>26565253</pmid><doi>10.1103/PhysRevE.92.042403</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1539-3755
ispartof Physical review. E, Statistical, nonlinear, and soft matter physics, 2015-10, Vol.92 (4), p.042403-042403, Article 042403
issn 1539-3755
1550-2376
language eng
recordid cdi_proquest_miscellaneous_1747327285
source MEDLINE; American Physical Society Journals
subjects Hydrodynamics
Mechanical Phenomena
Models, Theoretical
Nanotechnology
Water
title Squeeze-out dynamics of nanoconfined water: A detailed nanomechanical study
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T18%3A47%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Squeeze-out%20dynamics%20of%20nanoconfined%20water:%20A%20detailed%20nanomechanical%20study&rft.jtitle=Physical%20review.%20E,%20Statistical,%20nonlinear,%20and%20soft%20matter%20physics&rft.au=Khan,%20Shah%20H&rft.date=2015-10&rft.volume=92&rft.issue=4&rft.spage=042403&rft.epage=042403&rft.pages=042403-042403&rft.artnum=042403&rft.issn=1539-3755&rft.eissn=1550-2376&rft_id=info:doi/10.1103/PhysRevE.92.042403&rft_dat=%3Cproquest_cross%3E1747327285%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1747327285&rft_id=info:pmid/26565253&rfr_iscdi=true