Squeeze-out dynamics of nanoconfined water: A detailed nanomechanical study
In this study, we present a detailed analysis of the squeeze-out dynamics of nanoconfined water confined between two hydrophilic surfaces measured by small-amplitude dynamic atomic force microscopy. Explicitly considering the instantaneous tip-surface separation during squeeze-out, we confirm the ex...
Gespeichert in:
Veröffentlicht in: | Physical review. E, Statistical, nonlinear, and soft matter physics Statistical, nonlinear, and soft matter physics, 2015-10, Vol.92 (4), p.042403-042403, Article 042403 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 042403 |
---|---|
container_issue | 4 |
container_start_page | 042403 |
container_title | Physical review. E, Statistical, nonlinear, and soft matter physics |
container_volume | 92 |
creator | Khan, Shah H Hoffmann, Peter M |
description | In this study, we present a detailed analysis of the squeeze-out dynamics of nanoconfined water confined between two hydrophilic surfaces measured by small-amplitude dynamic atomic force microscopy. Explicitly considering the instantaneous tip-surface separation during squeeze-out, we confirm the existence of an adsorbed molecular water layer on mica and at least two hydration layers. We also confirm the previous observation of a sharp transition in the viscoelastic response of the nanoconfined water as the compression rate is increased beyond a critical value (previously determined to be about 0.8 nm/s). We find that below the critical value, the tip passes smoothly through the molecular layers of the film, while above the critical speed, the tip encounters "pinning" at separations where the film is able to temporarily order. Preordering of the film is accompanied by increased force fluctuations, which lead to increased damping preceding a peak in the film stiffness once ordering is completed. We analyze the data using both Kelvin-Voigt and Maxwell viscoelastic models. This provides a complementary picture of the viscoelastic response of the confined water film. |
doi_str_mv | 10.1103/PhysRevE.92.042403 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1747327285</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1747327285</sourcerecordid><originalsourceid>FETCH-LOGICAL-c347t-3c7bfef483799a1a913f081fa48afc08e61bc88e6e5e6479ac5c1fbcc14d462f3</originalsourceid><addsrcrecordid>eNo9kEtPwzAQhC0EoqXwBzigHLkk2F47TrhVVXmISiAeZ8tx1mpQHiVOQOHXk6otp1ntzoxWHyGXjEaMUbh5WQ_-Fb-XUcojKrigcESmTEoaclDx8XaGNAQl5YScef9JKXBIxCmZ8FjGkkuYkqe3rx7xF8Om74J8qE1VWB80LqhN3dimdkWNefBjOmxvg3mQY2eKctxszxXatakLa8rAd30-nJMTZ0qPF3udkY-75fviIVw93z8u5qvQglBdCFZlDp1IQKWpYSZl4GjCnBGJcZYmGLPMJqOgxFio1FhpmcusZSIXMXcwI9e73k3bjN_7TleFt1iWpsam95opoYArnsjRyndW2zbet-j0pi0q0w6aUb2FqA8Qdcr1DuIYutr391mF-X_kQA3-ABm8cAo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1747327285</pqid></control><display><type>article</type><title>Squeeze-out dynamics of nanoconfined water: A detailed nanomechanical study</title><source>MEDLINE</source><source>American Physical Society Journals</source><creator>Khan, Shah H ; Hoffmann, Peter M</creator><creatorcontrib>Khan, Shah H ; Hoffmann, Peter M</creatorcontrib><description>In this study, we present a detailed analysis of the squeeze-out dynamics of nanoconfined water confined between two hydrophilic surfaces measured by small-amplitude dynamic atomic force microscopy. Explicitly considering the instantaneous tip-surface separation during squeeze-out, we confirm the existence of an adsorbed molecular water layer on mica and at least two hydration layers. We also confirm the previous observation of a sharp transition in the viscoelastic response of the nanoconfined water as the compression rate is increased beyond a critical value (previously determined to be about 0.8 nm/s). We find that below the critical value, the tip passes smoothly through the molecular layers of the film, while above the critical speed, the tip encounters "pinning" at separations where the film is able to temporarily order. Preordering of the film is accompanied by increased force fluctuations, which lead to increased damping preceding a peak in the film stiffness once ordering is completed. We analyze the data using both Kelvin-Voigt and Maxwell viscoelastic models. This provides a complementary picture of the viscoelastic response of the confined water film.</description><identifier>ISSN: 1539-3755</identifier><identifier>EISSN: 1550-2376</identifier><identifier>DOI: 10.1103/PhysRevE.92.042403</identifier><identifier>PMID: 26565253</identifier><language>eng</language><publisher>United States</publisher><subject>Hydrodynamics ; Mechanical Phenomena ; Models, Theoretical ; Nanotechnology ; Water</subject><ispartof>Physical review. E, Statistical, nonlinear, and soft matter physics, 2015-10, Vol.92 (4), p.042403-042403, Article 042403</ispartof><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c347t-3c7bfef483799a1a913f081fa48afc08e61bc88e6e5e6479ac5c1fbcc14d462f3</citedby><cites>FETCH-LOGICAL-c347t-3c7bfef483799a1a913f081fa48afc08e61bc88e6e5e6479ac5c1fbcc14d462f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,2876,2877,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26565253$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Khan, Shah H</creatorcontrib><creatorcontrib>Hoffmann, Peter M</creatorcontrib><title>Squeeze-out dynamics of nanoconfined water: A detailed nanomechanical study</title><title>Physical review. E, Statistical, nonlinear, and soft matter physics</title><addtitle>Phys Rev E Stat Nonlin Soft Matter Phys</addtitle><description>In this study, we present a detailed analysis of the squeeze-out dynamics of nanoconfined water confined between two hydrophilic surfaces measured by small-amplitude dynamic atomic force microscopy. Explicitly considering the instantaneous tip-surface separation during squeeze-out, we confirm the existence of an adsorbed molecular water layer on mica and at least two hydration layers. We also confirm the previous observation of a sharp transition in the viscoelastic response of the nanoconfined water as the compression rate is increased beyond a critical value (previously determined to be about 0.8 nm/s). We find that below the critical value, the tip passes smoothly through the molecular layers of the film, while above the critical speed, the tip encounters "pinning" at separations where the film is able to temporarily order. Preordering of the film is accompanied by increased force fluctuations, which lead to increased damping preceding a peak in the film stiffness once ordering is completed. We analyze the data using both Kelvin-Voigt and Maxwell viscoelastic models. This provides a complementary picture of the viscoelastic response of the confined water film.</description><subject>Hydrodynamics</subject><subject>Mechanical Phenomena</subject><subject>Models, Theoretical</subject><subject>Nanotechnology</subject><subject>Water</subject><issn>1539-3755</issn><issn>1550-2376</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNo9kEtPwzAQhC0EoqXwBzigHLkk2F47TrhVVXmISiAeZ8tx1mpQHiVOQOHXk6otp1ntzoxWHyGXjEaMUbh5WQ_-Fb-XUcojKrigcESmTEoaclDx8XaGNAQl5YScef9JKXBIxCmZ8FjGkkuYkqe3rx7xF8Om74J8qE1VWB80LqhN3dimdkWNefBjOmxvg3mQY2eKctxszxXatakLa8rAd30-nJMTZ0qPF3udkY-75fviIVw93z8u5qvQglBdCFZlDp1IQKWpYSZl4GjCnBGJcZYmGLPMJqOgxFio1FhpmcusZSIXMXcwI9e73k3bjN_7TleFt1iWpsam95opoYArnsjRyndW2zbet-j0pi0q0w6aUb2FqA8Qdcr1DuIYutr391mF-X_kQA3-ABm8cAo</recordid><startdate>201510</startdate><enddate>201510</enddate><creator>Khan, Shah H</creator><creator>Hoffmann, Peter M</creator><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>201510</creationdate><title>Squeeze-out dynamics of nanoconfined water: A detailed nanomechanical study</title><author>Khan, Shah H ; Hoffmann, Peter M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c347t-3c7bfef483799a1a913f081fa48afc08e61bc88e6e5e6479ac5c1fbcc14d462f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Hydrodynamics</topic><topic>Mechanical Phenomena</topic><topic>Models, Theoretical</topic><topic>Nanotechnology</topic><topic>Water</topic><toplevel>online_resources</toplevel><creatorcontrib>Khan, Shah H</creatorcontrib><creatorcontrib>Hoffmann, Peter M</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Physical review. E, Statistical, nonlinear, and soft matter physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Khan, Shah H</au><au>Hoffmann, Peter M</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Squeeze-out dynamics of nanoconfined water: A detailed nanomechanical study</atitle><jtitle>Physical review. E, Statistical, nonlinear, and soft matter physics</jtitle><addtitle>Phys Rev E Stat Nonlin Soft Matter Phys</addtitle><date>2015-10</date><risdate>2015</risdate><volume>92</volume><issue>4</issue><spage>042403</spage><epage>042403</epage><pages>042403-042403</pages><artnum>042403</artnum><issn>1539-3755</issn><eissn>1550-2376</eissn><abstract>In this study, we present a detailed analysis of the squeeze-out dynamics of nanoconfined water confined between two hydrophilic surfaces measured by small-amplitude dynamic atomic force microscopy. Explicitly considering the instantaneous tip-surface separation during squeeze-out, we confirm the existence of an adsorbed molecular water layer on mica and at least two hydration layers. We also confirm the previous observation of a sharp transition in the viscoelastic response of the nanoconfined water as the compression rate is increased beyond a critical value (previously determined to be about 0.8 nm/s). We find that below the critical value, the tip passes smoothly through the molecular layers of the film, while above the critical speed, the tip encounters "pinning" at separations where the film is able to temporarily order. Preordering of the film is accompanied by increased force fluctuations, which lead to increased damping preceding a peak in the film stiffness once ordering is completed. We analyze the data using both Kelvin-Voigt and Maxwell viscoelastic models. This provides a complementary picture of the viscoelastic response of the confined water film.</abstract><cop>United States</cop><pmid>26565253</pmid><doi>10.1103/PhysRevE.92.042403</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1539-3755 |
ispartof | Physical review. E, Statistical, nonlinear, and soft matter physics, 2015-10, Vol.92 (4), p.042403-042403, Article 042403 |
issn | 1539-3755 1550-2376 |
language | eng |
recordid | cdi_proquest_miscellaneous_1747327285 |
source | MEDLINE; American Physical Society Journals |
subjects | Hydrodynamics Mechanical Phenomena Models, Theoretical Nanotechnology Water |
title | Squeeze-out dynamics of nanoconfined water: A detailed nanomechanical study |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T18%3A47%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Squeeze-out%20dynamics%20of%20nanoconfined%20water:%20A%20detailed%20nanomechanical%20study&rft.jtitle=Physical%20review.%20E,%20Statistical,%20nonlinear,%20and%20soft%20matter%20physics&rft.au=Khan,%20Shah%20H&rft.date=2015-10&rft.volume=92&rft.issue=4&rft.spage=042403&rft.epage=042403&rft.pages=042403-042403&rft.artnum=042403&rft.issn=1539-3755&rft.eissn=1550-2376&rft_id=info:doi/10.1103/PhysRevE.92.042403&rft_dat=%3Cproquest_cross%3E1747327285%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1747327285&rft_id=info:pmid/26565253&rfr_iscdi=true |