Competition of lattice and basis for alignment of nematic liquid crystals

Due to elastic anisotropy, two-dimensional patterning of substrates can promote weak azimuthal alignment of adjacent nematic liquid crystals. Here we consider how such alignment can be achieved using a periodic square lattice of circular or elliptical motifs. In particular, we examine ways in which...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review. E, Statistical, nonlinear, and soft matter physics Statistical, nonlinear, and soft matter physics, 2015-10, Vol.92 (4), p.042501-042501, Article 042501
Hauptverfasser: DeBenedictis, Andrew, Atherton, Timothy J, Anquetil-Deck, Candy, Cleaver, Douglas J, Emerson, David B, Wolak, Mathew, Adler, James H
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 042501
container_issue 4
container_start_page 042501
container_title Physical review. E, Statistical, nonlinear, and soft matter physics
container_volume 92
creator DeBenedictis, Andrew
Atherton, Timothy J
Anquetil-Deck, Candy
Cleaver, Douglas J
Emerson, David B
Wolak, Mathew
Adler, James H
description Due to elastic anisotropy, two-dimensional patterning of substrates can promote weak azimuthal alignment of adjacent nematic liquid crystals. Here we consider how such alignment can be achieved using a periodic square lattice of circular or elliptical motifs. In particular, we examine ways in which the lattice and motif can combine to favor differing orientations. Using Monte Carlo simulation and continuum elasticity we find, for circular motifs, that the coverage fraction controls both the polar anchoring angle and a transition in the azimuthal orientation. If the circles are generalized to ellipses, arbitrary control of the effective easy axis and effective anchoring potential becomes achievable by appropriate tuning of the ellipse motif relative to the periodic lattice patterning. This has possible applications in both monostable and bistable liquid crystal device contexts.
doi_str_mv 10.1103/PhysRevE.92.042501
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1747327017</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1747327017</sourcerecordid><originalsourceid>FETCH-LOGICAL-c303t-e2b69c58cf5d48ebc53c63ee7c316ee6cdce0f93911a5e9bc9338ce863ef741d3</originalsourceid><addsrcrecordid>eNo9kD1PwzAURS0EoqXwBxiQR5YU2y-O4xFVBSpVAiGYLcd5AaN8tLGD1H9PqrZM9w7n3uEQcsvZnHMGD2_fu_COv8u5FnOWCsn4GZlyKVkiQGXn-w46ASXlhFyF8MMYCMjTSzIRmcykkHpKVouu2WD00Xct7Spa2xi9Q2rbkhY2-ECrrqe29l9tg23cIy02dmRo7beDL6nrdyHaOlyTi2oMvDnmjHw-LT8WL8n69Xm1eFwnDhjEBEWRaSdzV8kyzbFwElwGiMoBzxAzVzpklQbNuZWoC6cBcof5yFQq5SXMyP3hd9N32wFDNI0PDuvattgNwXCVKhCKcTWi4oC6vguhx8pset_Yfmc4M3uF5qTQaGEOCsfR3fF_KBos_ycnZ_AHNRdveA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1747327017</pqid></control><display><type>article</type><title>Competition of lattice and basis for alignment of nematic liquid crystals</title><source>American Physical Society Journals</source><creator>DeBenedictis, Andrew ; Atherton, Timothy J ; Anquetil-Deck, Candy ; Cleaver, Douglas J ; Emerson, David B ; Wolak, Mathew ; Adler, James H</creator><creatorcontrib>DeBenedictis, Andrew ; Atherton, Timothy J ; Anquetil-Deck, Candy ; Cleaver, Douglas J ; Emerson, David B ; Wolak, Mathew ; Adler, James H</creatorcontrib><description>Due to elastic anisotropy, two-dimensional patterning of substrates can promote weak azimuthal alignment of adjacent nematic liquid crystals. Here we consider how such alignment can be achieved using a periodic square lattice of circular or elliptical motifs. In particular, we examine ways in which the lattice and motif can combine to favor differing orientations. Using Monte Carlo simulation and continuum elasticity we find, for circular motifs, that the coverage fraction controls both the polar anchoring angle and a transition in the azimuthal orientation. If the circles are generalized to ellipses, arbitrary control of the effective easy axis and effective anchoring potential becomes achievable by appropriate tuning of the ellipse motif relative to the periodic lattice patterning. This has possible applications in both monostable and bistable liquid crystal device contexts.</description><identifier>ISSN: 1539-3755</identifier><identifier>EISSN: 1550-2376</identifier><identifier>DOI: 10.1103/PhysRevE.92.042501</identifier><identifier>PMID: 26565259</identifier><language>eng</language><publisher>United States</publisher><ispartof>Physical review. E, Statistical, nonlinear, and soft matter physics, 2015-10, Vol.92 (4), p.042501-042501, Article 042501</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c303t-e2b69c58cf5d48ebc53c63ee7c316ee6cdce0f93911a5e9bc9338ce863ef741d3</citedby><cites>FETCH-LOGICAL-c303t-e2b69c58cf5d48ebc53c63ee7c316ee6cdce0f93911a5e9bc9338ce863ef741d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,2876,2877,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26565259$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>DeBenedictis, Andrew</creatorcontrib><creatorcontrib>Atherton, Timothy J</creatorcontrib><creatorcontrib>Anquetil-Deck, Candy</creatorcontrib><creatorcontrib>Cleaver, Douglas J</creatorcontrib><creatorcontrib>Emerson, David B</creatorcontrib><creatorcontrib>Wolak, Mathew</creatorcontrib><creatorcontrib>Adler, James H</creatorcontrib><title>Competition of lattice and basis for alignment of nematic liquid crystals</title><title>Physical review. E, Statistical, nonlinear, and soft matter physics</title><addtitle>Phys Rev E Stat Nonlin Soft Matter Phys</addtitle><description>Due to elastic anisotropy, two-dimensional patterning of substrates can promote weak azimuthal alignment of adjacent nematic liquid crystals. Here we consider how such alignment can be achieved using a periodic square lattice of circular or elliptical motifs. In particular, we examine ways in which the lattice and motif can combine to favor differing orientations. Using Monte Carlo simulation and continuum elasticity we find, for circular motifs, that the coverage fraction controls both the polar anchoring angle and a transition in the azimuthal orientation. If the circles are generalized to ellipses, arbitrary control of the effective easy axis and effective anchoring potential becomes achievable by appropriate tuning of the ellipse motif relative to the periodic lattice patterning. This has possible applications in both monostable and bistable liquid crystal device contexts.</description><issn>1539-3755</issn><issn>1550-2376</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNo9kD1PwzAURS0EoqXwBxiQR5YU2y-O4xFVBSpVAiGYLcd5AaN8tLGD1H9PqrZM9w7n3uEQcsvZnHMGD2_fu_COv8u5FnOWCsn4GZlyKVkiQGXn-w46ASXlhFyF8MMYCMjTSzIRmcykkHpKVouu2WD00Xct7Spa2xi9Q2rbkhY2-ECrrqe29l9tg23cIy02dmRo7beDL6nrdyHaOlyTi2oMvDnmjHw-LT8WL8n69Xm1eFwnDhjEBEWRaSdzV8kyzbFwElwGiMoBzxAzVzpklQbNuZWoC6cBcof5yFQq5SXMyP3hd9N32wFDNI0PDuvattgNwXCVKhCKcTWi4oC6vguhx8pset_Yfmc4M3uF5qTQaGEOCsfR3fF_KBos_ycnZ_AHNRdveA</recordid><startdate>201510</startdate><enddate>201510</enddate><creator>DeBenedictis, Andrew</creator><creator>Atherton, Timothy J</creator><creator>Anquetil-Deck, Candy</creator><creator>Cleaver, Douglas J</creator><creator>Emerson, David B</creator><creator>Wolak, Mathew</creator><creator>Adler, James H</creator><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>201510</creationdate><title>Competition of lattice and basis for alignment of nematic liquid crystals</title><author>DeBenedictis, Andrew ; Atherton, Timothy J ; Anquetil-Deck, Candy ; Cleaver, Douglas J ; Emerson, David B ; Wolak, Mathew ; Adler, James H</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c303t-e2b69c58cf5d48ebc53c63ee7c316ee6cdce0f93911a5e9bc9338ce863ef741d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><toplevel>online_resources</toplevel><creatorcontrib>DeBenedictis, Andrew</creatorcontrib><creatorcontrib>Atherton, Timothy J</creatorcontrib><creatorcontrib>Anquetil-Deck, Candy</creatorcontrib><creatorcontrib>Cleaver, Douglas J</creatorcontrib><creatorcontrib>Emerson, David B</creatorcontrib><creatorcontrib>Wolak, Mathew</creatorcontrib><creatorcontrib>Adler, James H</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Physical review. E, Statistical, nonlinear, and soft matter physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>DeBenedictis, Andrew</au><au>Atherton, Timothy J</au><au>Anquetil-Deck, Candy</au><au>Cleaver, Douglas J</au><au>Emerson, David B</au><au>Wolak, Mathew</au><au>Adler, James H</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Competition of lattice and basis for alignment of nematic liquid crystals</atitle><jtitle>Physical review. E, Statistical, nonlinear, and soft matter physics</jtitle><addtitle>Phys Rev E Stat Nonlin Soft Matter Phys</addtitle><date>2015-10</date><risdate>2015</risdate><volume>92</volume><issue>4</issue><spage>042501</spage><epage>042501</epage><pages>042501-042501</pages><artnum>042501</artnum><issn>1539-3755</issn><eissn>1550-2376</eissn><abstract>Due to elastic anisotropy, two-dimensional patterning of substrates can promote weak azimuthal alignment of adjacent nematic liquid crystals. Here we consider how such alignment can be achieved using a periodic square lattice of circular or elliptical motifs. In particular, we examine ways in which the lattice and motif can combine to favor differing orientations. Using Monte Carlo simulation and continuum elasticity we find, for circular motifs, that the coverage fraction controls both the polar anchoring angle and a transition in the azimuthal orientation. If the circles are generalized to ellipses, arbitrary control of the effective easy axis and effective anchoring potential becomes achievable by appropriate tuning of the ellipse motif relative to the periodic lattice patterning. This has possible applications in both monostable and bistable liquid crystal device contexts.</abstract><cop>United States</cop><pmid>26565259</pmid><doi>10.1103/PhysRevE.92.042501</doi><tpages>1</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1539-3755
ispartof Physical review. E, Statistical, nonlinear, and soft matter physics, 2015-10, Vol.92 (4), p.042501-042501, Article 042501
issn 1539-3755
1550-2376
language eng
recordid cdi_proquest_miscellaneous_1747327017
source American Physical Society Journals
title Competition of lattice and basis for alignment of nematic liquid crystals
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T19%3A29%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Competition%20of%20lattice%20and%20basis%20for%20alignment%20of%20nematic%20liquid%20crystals&rft.jtitle=Physical%20review.%20E,%20Statistical,%20nonlinear,%20and%20soft%20matter%20physics&rft.au=DeBenedictis,%20Andrew&rft.date=2015-10&rft.volume=92&rft.issue=4&rft.spage=042501&rft.epage=042501&rft.pages=042501-042501&rft.artnum=042501&rft.issn=1539-3755&rft.eissn=1550-2376&rft_id=info:doi/10.1103/PhysRevE.92.042501&rft_dat=%3Cproquest_cross%3E1747327017%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1747327017&rft_id=info:pmid/26565259&rfr_iscdi=true