Competition of lattice and basis for alignment of nematic liquid crystals
Due to elastic anisotropy, two-dimensional patterning of substrates can promote weak azimuthal alignment of adjacent nematic liquid crystals. Here we consider how such alignment can be achieved using a periodic square lattice of circular or elliptical motifs. In particular, we examine ways in which...
Gespeichert in:
Veröffentlicht in: | Physical review. E, Statistical, nonlinear, and soft matter physics Statistical, nonlinear, and soft matter physics, 2015-10, Vol.92 (4), p.042501-042501, Article 042501 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 042501 |
---|---|
container_issue | 4 |
container_start_page | 042501 |
container_title | Physical review. E, Statistical, nonlinear, and soft matter physics |
container_volume | 92 |
creator | DeBenedictis, Andrew Atherton, Timothy J Anquetil-Deck, Candy Cleaver, Douglas J Emerson, David B Wolak, Mathew Adler, James H |
description | Due to elastic anisotropy, two-dimensional patterning of substrates can promote weak azimuthal alignment of adjacent nematic liquid crystals. Here we consider how such alignment can be achieved using a periodic square lattice of circular or elliptical motifs. In particular, we examine ways in which the lattice and motif can combine to favor differing orientations. Using Monte Carlo simulation and continuum elasticity we find, for circular motifs, that the coverage fraction controls both the polar anchoring angle and a transition in the azimuthal orientation. If the circles are generalized to ellipses, arbitrary control of the effective easy axis and effective anchoring potential becomes achievable by appropriate tuning of the ellipse motif relative to the periodic lattice patterning. This has possible applications in both monostable and bistable liquid crystal device contexts. |
doi_str_mv | 10.1103/PhysRevE.92.042501 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1747327017</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1747327017</sourcerecordid><originalsourceid>FETCH-LOGICAL-c303t-e2b69c58cf5d48ebc53c63ee7c316ee6cdce0f93911a5e9bc9338ce863ef741d3</originalsourceid><addsrcrecordid>eNo9kD1PwzAURS0EoqXwBxiQR5YU2y-O4xFVBSpVAiGYLcd5AaN8tLGD1H9PqrZM9w7n3uEQcsvZnHMGD2_fu_COv8u5FnOWCsn4GZlyKVkiQGXn-w46ASXlhFyF8MMYCMjTSzIRmcykkHpKVouu2WD00Xct7Spa2xi9Q2rbkhY2-ECrrqe29l9tg23cIy02dmRo7beDL6nrdyHaOlyTi2oMvDnmjHw-LT8WL8n69Xm1eFwnDhjEBEWRaSdzV8kyzbFwElwGiMoBzxAzVzpklQbNuZWoC6cBcof5yFQq5SXMyP3hd9N32wFDNI0PDuvattgNwXCVKhCKcTWi4oC6vguhx8pset_Yfmc4M3uF5qTQaGEOCsfR3fF_KBos_ycnZ_AHNRdveA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1747327017</pqid></control><display><type>article</type><title>Competition of lattice and basis for alignment of nematic liquid crystals</title><source>American Physical Society Journals</source><creator>DeBenedictis, Andrew ; Atherton, Timothy J ; Anquetil-Deck, Candy ; Cleaver, Douglas J ; Emerson, David B ; Wolak, Mathew ; Adler, James H</creator><creatorcontrib>DeBenedictis, Andrew ; Atherton, Timothy J ; Anquetil-Deck, Candy ; Cleaver, Douglas J ; Emerson, David B ; Wolak, Mathew ; Adler, James H</creatorcontrib><description>Due to elastic anisotropy, two-dimensional patterning of substrates can promote weak azimuthal alignment of adjacent nematic liquid crystals. Here we consider how such alignment can be achieved using a periodic square lattice of circular or elliptical motifs. In particular, we examine ways in which the lattice and motif can combine to favor differing orientations. Using Monte Carlo simulation and continuum elasticity we find, for circular motifs, that the coverage fraction controls both the polar anchoring angle and a transition in the azimuthal orientation. If the circles are generalized to ellipses, arbitrary control of the effective easy axis and effective anchoring potential becomes achievable by appropriate tuning of the ellipse motif relative to the periodic lattice patterning. This has possible applications in both monostable and bistable liquid crystal device contexts.</description><identifier>ISSN: 1539-3755</identifier><identifier>EISSN: 1550-2376</identifier><identifier>DOI: 10.1103/PhysRevE.92.042501</identifier><identifier>PMID: 26565259</identifier><language>eng</language><publisher>United States</publisher><ispartof>Physical review. E, Statistical, nonlinear, and soft matter physics, 2015-10, Vol.92 (4), p.042501-042501, Article 042501</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c303t-e2b69c58cf5d48ebc53c63ee7c316ee6cdce0f93911a5e9bc9338ce863ef741d3</citedby><cites>FETCH-LOGICAL-c303t-e2b69c58cf5d48ebc53c63ee7c316ee6cdce0f93911a5e9bc9338ce863ef741d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,2876,2877,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26565259$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>DeBenedictis, Andrew</creatorcontrib><creatorcontrib>Atherton, Timothy J</creatorcontrib><creatorcontrib>Anquetil-Deck, Candy</creatorcontrib><creatorcontrib>Cleaver, Douglas J</creatorcontrib><creatorcontrib>Emerson, David B</creatorcontrib><creatorcontrib>Wolak, Mathew</creatorcontrib><creatorcontrib>Adler, James H</creatorcontrib><title>Competition of lattice and basis for alignment of nematic liquid crystals</title><title>Physical review. E, Statistical, nonlinear, and soft matter physics</title><addtitle>Phys Rev E Stat Nonlin Soft Matter Phys</addtitle><description>Due to elastic anisotropy, two-dimensional patterning of substrates can promote weak azimuthal alignment of adjacent nematic liquid crystals. Here we consider how such alignment can be achieved using a periodic square lattice of circular or elliptical motifs. In particular, we examine ways in which the lattice and motif can combine to favor differing orientations. Using Monte Carlo simulation and continuum elasticity we find, for circular motifs, that the coverage fraction controls both the polar anchoring angle and a transition in the azimuthal orientation. If the circles are generalized to ellipses, arbitrary control of the effective easy axis and effective anchoring potential becomes achievable by appropriate tuning of the ellipse motif relative to the periodic lattice patterning. This has possible applications in both monostable and bistable liquid crystal device contexts.</description><issn>1539-3755</issn><issn>1550-2376</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNo9kD1PwzAURS0EoqXwBxiQR5YU2y-O4xFVBSpVAiGYLcd5AaN8tLGD1H9PqrZM9w7n3uEQcsvZnHMGD2_fu_COv8u5FnOWCsn4GZlyKVkiQGXn-w46ASXlhFyF8MMYCMjTSzIRmcykkHpKVouu2WD00Xct7Spa2xi9Q2rbkhY2-ECrrqe29l9tg23cIy02dmRo7beDL6nrdyHaOlyTi2oMvDnmjHw-LT8WL8n69Xm1eFwnDhjEBEWRaSdzV8kyzbFwElwGiMoBzxAzVzpklQbNuZWoC6cBcof5yFQq5SXMyP3hd9N32wFDNI0PDuvattgNwXCVKhCKcTWi4oC6vguhx8pset_Yfmc4M3uF5qTQaGEOCsfR3fF_KBos_ycnZ_AHNRdveA</recordid><startdate>201510</startdate><enddate>201510</enddate><creator>DeBenedictis, Andrew</creator><creator>Atherton, Timothy J</creator><creator>Anquetil-Deck, Candy</creator><creator>Cleaver, Douglas J</creator><creator>Emerson, David B</creator><creator>Wolak, Mathew</creator><creator>Adler, James H</creator><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>201510</creationdate><title>Competition of lattice and basis for alignment of nematic liquid crystals</title><author>DeBenedictis, Andrew ; Atherton, Timothy J ; Anquetil-Deck, Candy ; Cleaver, Douglas J ; Emerson, David B ; Wolak, Mathew ; Adler, James H</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c303t-e2b69c58cf5d48ebc53c63ee7c316ee6cdce0f93911a5e9bc9338ce863ef741d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><toplevel>online_resources</toplevel><creatorcontrib>DeBenedictis, Andrew</creatorcontrib><creatorcontrib>Atherton, Timothy J</creatorcontrib><creatorcontrib>Anquetil-Deck, Candy</creatorcontrib><creatorcontrib>Cleaver, Douglas J</creatorcontrib><creatorcontrib>Emerson, David B</creatorcontrib><creatorcontrib>Wolak, Mathew</creatorcontrib><creatorcontrib>Adler, James H</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Physical review. E, Statistical, nonlinear, and soft matter physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>DeBenedictis, Andrew</au><au>Atherton, Timothy J</au><au>Anquetil-Deck, Candy</au><au>Cleaver, Douglas J</au><au>Emerson, David B</au><au>Wolak, Mathew</au><au>Adler, James H</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Competition of lattice and basis for alignment of nematic liquid crystals</atitle><jtitle>Physical review. E, Statistical, nonlinear, and soft matter physics</jtitle><addtitle>Phys Rev E Stat Nonlin Soft Matter Phys</addtitle><date>2015-10</date><risdate>2015</risdate><volume>92</volume><issue>4</issue><spage>042501</spage><epage>042501</epage><pages>042501-042501</pages><artnum>042501</artnum><issn>1539-3755</issn><eissn>1550-2376</eissn><abstract>Due to elastic anisotropy, two-dimensional patterning of substrates can promote weak azimuthal alignment of adjacent nematic liquid crystals. Here we consider how such alignment can be achieved using a periodic square lattice of circular or elliptical motifs. In particular, we examine ways in which the lattice and motif can combine to favor differing orientations. Using Monte Carlo simulation and continuum elasticity we find, for circular motifs, that the coverage fraction controls both the polar anchoring angle and a transition in the azimuthal orientation. If the circles are generalized to ellipses, arbitrary control of the effective easy axis and effective anchoring potential becomes achievable by appropriate tuning of the ellipse motif relative to the periodic lattice patterning. This has possible applications in both monostable and bistable liquid crystal device contexts.</abstract><cop>United States</cop><pmid>26565259</pmid><doi>10.1103/PhysRevE.92.042501</doi><tpages>1</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1539-3755 |
ispartof | Physical review. E, Statistical, nonlinear, and soft matter physics, 2015-10, Vol.92 (4), p.042501-042501, Article 042501 |
issn | 1539-3755 1550-2376 |
language | eng |
recordid | cdi_proquest_miscellaneous_1747327017 |
source | American Physical Society Journals |
title | Competition of lattice and basis for alignment of nematic liquid crystals |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T19%3A29%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Competition%20of%20lattice%20and%20basis%20for%20alignment%20of%20nematic%20liquid%20crystals&rft.jtitle=Physical%20review.%20E,%20Statistical,%20nonlinear,%20and%20soft%20matter%20physics&rft.au=DeBenedictis,%20Andrew&rft.date=2015-10&rft.volume=92&rft.issue=4&rft.spage=042501&rft.epage=042501&rft.pages=042501-042501&rft.artnum=042501&rft.issn=1539-3755&rft.eissn=1550-2376&rft_id=info:doi/10.1103/PhysRevE.92.042501&rft_dat=%3Cproquest_cross%3E1747327017%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1747327017&rft_id=info:pmid/26565259&rfr_iscdi=true |