Imaging the Three-Dimensional Conductive Channel in Filamentary-Based Oxide Resistive Switching Memory

Filamentary-based oxide resistive memory is considered as a disruptive technology for nonvolatile data storage and reconfigurable logic. Currently accepted models explain the resistive switching in these devices through the presence/absence of a conductive filament (CF) that is described as a revers...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nano letters 2015-12, Vol.15 (12), p.7970-7975
Hauptverfasser: Celano, Umberto, Goux, Ludovic, Degraeve, Robin, Fantini, Andrea, Richard, Olivier, Bender, Hugo, Jurczak, Malgorzata, Vandervorst, Wilfried
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 7975
container_issue 12
container_start_page 7970
container_title Nano letters
container_volume 15
creator Celano, Umberto
Goux, Ludovic
Degraeve, Robin
Fantini, Andrea
Richard, Olivier
Bender, Hugo
Jurczak, Malgorzata
Vandervorst, Wilfried
description Filamentary-based oxide resistive memory is considered as a disruptive technology for nonvolatile data storage and reconfigurable logic. Currently accepted models explain the resistive switching in these devices through the presence/absence of a conductive filament (CF) that is described as a reversible nanosized valence-change in an oxide material. During device operation, the CF cycles billion of times at subnanosecond speed, using few tens of microamperes as operating current and thus determines the whole device’s performance. Despite its importance, the CF observation is hampered by the small filament size and its minimal compositional difference with the surrounding material. Here we show an experimental solution to this problem and provide the three-dimensional (3D) characterization of the CF in a scaled device. For this purpose we have recently developed a tomography technique which combines the high spatial resolution of scanning probe microscopy with subnanometer precision in material removal, leading to a true 3D-probing metrology concept. We locate and characterize in three-dimensions the nanometric volume of the conductive filament in state-of-the-art bipolar oxide-based devices. Our measurements demonstrate that the switching occurs through the formation of a single conductive filament. The filaments exhibit sizes below 10 nm and present a constriction near the oxygen-inert electrode. Finally, different atomic-size contacts are observed as a function of the programming current, providing evidence for the filament’s nature as a defects modulated quantum contact.
doi_str_mv 10.1021/acs.nanolett.5b03078
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1747311508</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1747311508</sourcerecordid><originalsourceid>FETCH-LOGICAL-a414t-652306ac869db3c533364a05bb327d9eaa493ee4c38374d9e1ee66a1a34bccf93</originalsourceid><addsrcrecordid>eNp9kMtOwzAQRS0EoqXwBwhlySbFjp3XEgqFSkWVoKyjiTNpXCV2iROgf09CH0tWHlnn3rEPIdeMjhn12B1IO9agTYlNM_ZTymkYnZAh8zl1gzj2To9zJAbkwto1pTTmPj0nAy_wPR773pDkswpWSq-cpkBnWdSI7qOqUFtlNJTOxOislY36QmdSgNZYOko7U1VCxzRQb90HsJg5ix-VofOGVtk_-P1bNbLoe1-xMvX2kpzlUFq82p8j8jF9Wk5e3PnieTa5n7sgmGjc_lk0ABkFcZZy6XPOAwHUT1PuhVmMACLmiELyiIeiu2CIQQAMuEilzGM-Ire73k1tPlu0TVIpK7EsQaNpbcJCEXLGfBp1qNihsjbW1pgnm1pV3ZcSRpPecNIZTg6Gk73hLnaz39CmFWbH0EFpB9Ad0MfXpq07j_b_zl9NSoxX</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1747311508</pqid></control><display><type>article</type><title>Imaging the Three-Dimensional Conductive Channel in Filamentary-Based Oxide Resistive Switching Memory</title><source>ACS Publications</source><creator>Celano, Umberto ; Goux, Ludovic ; Degraeve, Robin ; Fantini, Andrea ; Richard, Olivier ; Bender, Hugo ; Jurczak, Malgorzata ; Vandervorst, Wilfried</creator><creatorcontrib>Celano, Umberto ; Goux, Ludovic ; Degraeve, Robin ; Fantini, Andrea ; Richard, Olivier ; Bender, Hugo ; Jurczak, Malgorzata ; Vandervorst, Wilfried</creatorcontrib><description>Filamentary-based oxide resistive memory is considered as a disruptive technology for nonvolatile data storage and reconfigurable logic. Currently accepted models explain the resistive switching in these devices through the presence/absence of a conductive filament (CF) that is described as a reversible nanosized valence-change in an oxide material. During device operation, the CF cycles billion of times at subnanosecond speed, using few tens of microamperes as operating current and thus determines the whole device’s performance. Despite its importance, the CF observation is hampered by the small filament size and its minimal compositional difference with the surrounding material. Here we show an experimental solution to this problem and provide the three-dimensional (3D) characterization of the CF in a scaled device. For this purpose we have recently developed a tomography technique which combines the high spatial resolution of scanning probe microscopy with subnanometer precision in material removal, leading to a true 3D-probing metrology concept. We locate and characterize in three-dimensions the nanometric volume of the conductive filament in state-of-the-art bipolar oxide-based devices. Our measurements demonstrate that the switching occurs through the formation of a single conductive filament. The filaments exhibit sizes below 10 nm and present a constriction near the oxygen-inert electrode. Finally, different atomic-size contacts are observed as a function of the programming current, providing evidence for the filament’s nature as a defects modulated quantum contact.</description><identifier>ISSN: 1530-6984</identifier><identifier>EISSN: 1530-6992</identifier><identifier>DOI: 10.1021/acs.nanolett.5b03078</identifier><identifier>PMID: 26523952</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><ispartof>Nano letters, 2015-12, Vol.15 (12), p.7970-7975</ispartof><rights>Copyright © 2015 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a414t-652306ac869db3c533364a05bb327d9eaa493ee4c38374d9e1ee66a1a34bccf93</citedby><cites>FETCH-LOGICAL-a414t-652306ac869db3c533364a05bb327d9eaa493ee4c38374d9e1ee66a1a34bccf93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.nanolett.5b03078$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.nanolett.5b03078$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2752,27053,27901,27902,56713,56763</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26523952$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Celano, Umberto</creatorcontrib><creatorcontrib>Goux, Ludovic</creatorcontrib><creatorcontrib>Degraeve, Robin</creatorcontrib><creatorcontrib>Fantini, Andrea</creatorcontrib><creatorcontrib>Richard, Olivier</creatorcontrib><creatorcontrib>Bender, Hugo</creatorcontrib><creatorcontrib>Jurczak, Malgorzata</creatorcontrib><creatorcontrib>Vandervorst, Wilfried</creatorcontrib><title>Imaging the Three-Dimensional Conductive Channel in Filamentary-Based Oxide Resistive Switching Memory</title><title>Nano letters</title><addtitle>Nano Lett</addtitle><description>Filamentary-based oxide resistive memory is considered as a disruptive technology for nonvolatile data storage and reconfigurable logic. Currently accepted models explain the resistive switching in these devices through the presence/absence of a conductive filament (CF) that is described as a reversible nanosized valence-change in an oxide material. During device operation, the CF cycles billion of times at subnanosecond speed, using few tens of microamperes as operating current and thus determines the whole device’s performance. Despite its importance, the CF observation is hampered by the small filament size and its minimal compositional difference with the surrounding material. Here we show an experimental solution to this problem and provide the three-dimensional (3D) characterization of the CF in a scaled device. For this purpose we have recently developed a tomography technique which combines the high spatial resolution of scanning probe microscopy with subnanometer precision in material removal, leading to a true 3D-probing metrology concept. We locate and characterize in three-dimensions the nanometric volume of the conductive filament in state-of-the-art bipolar oxide-based devices. Our measurements demonstrate that the switching occurs through the formation of a single conductive filament. The filaments exhibit sizes below 10 nm and present a constriction near the oxygen-inert electrode. Finally, different atomic-size contacts are observed as a function of the programming current, providing evidence for the filament’s nature as a defects modulated quantum contact.</description><issn>1530-6984</issn><issn>1530-6992</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNp9kMtOwzAQRS0EoqXwBwhlySbFjp3XEgqFSkWVoKyjiTNpXCV2iROgf09CH0tWHlnn3rEPIdeMjhn12B1IO9agTYlNM_ZTymkYnZAh8zl1gzj2To9zJAbkwto1pTTmPj0nAy_wPR773pDkswpWSq-cpkBnWdSI7qOqUFtlNJTOxOislY36QmdSgNZYOko7U1VCxzRQb90HsJg5ix-VofOGVtk_-P1bNbLoe1-xMvX2kpzlUFq82p8j8jF9Wk5e3PnieTa5n7sgmGjc_lk0ABkFcZZy6XPOAwHUT1PuhVmMACLmiELyiIeiu2CIQQAMuEilzGM-Ire73k1tPlu0TVIpK7EsQaNpbcJCEXLGfBp1qNihsjbW1pgnm1pV3ZcSRpPecNIZTg6Gk73hLnaz39CmFWbH0EFpB9Ad0MfXpq07j_b_zl9NSoxX</recordid><startdate>20151209</startdate><enddate>20151209</enddate><creator>Celano, Umberto</creator><creator>Goux, Ludovic</creator><creator>Degraeve, Robin</creator><creator>Fantini, Andrea</creator><creator>Richard, Olivier</creator><creator>Bender, Hugo</creator><creator>Jurczak, Malgorzata</creator><creator>Vandervorst, Wilfried</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20151209</creationdate><title>Imaging the Three-Dimensional Conductive Channel in Filamentary-Based Oxide Resistive Switching Memory</title><author>Celano, Umberto ; Goux, Ludovic ; Degraeve, Robin ; Fantini, Andrea ; Richard, Olivier ; Bender, Hugo ; Jurczak, Malgorzata ; Vandervorst, Wilfried</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a414t-652306ac869db3c533364a05bb327d9eaa493ee4c38374d9e1ee66a1a34bccf93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Celano, Umberto</creatorcontrib><creatorcontrib>Goux, Ludovic</creatorcontrib><creatorcontrib>Degraeve, Robin</creatorcontrib><creatorcontrib>Fantini, Andrea</creatorcontrib><creatorcontrib>Richard, Olivier</creatorcontrib><creatorcontrib>Bender, Hugo</creatorcontrib><creatorcontrib>Jurczak, Malgorzata</creatorcontrib><creatorcontrib>Vandervorst, Wilfried</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Nano letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Celano, Umberto</au><au>Goux, Ludovic</au><au>Degraeve, Robin</au><au>Fantini, Andrea</au><au>Richard, Olivier</au><au>Bender, Hugo</au><au>Jurczak, Malgorzata</au><au>Vandervorst, Wilfried</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Imaging the Three-Dimensional Conductive Channel in Filamentary-Based Oxide Resistive Switching Memory</atitle><jtitle>Nano letters</jtitle><addtitle>Nano Lett</addtitle><date>2015-12-09</date><risdate>2015</risdate><volume>15</volume><issue>12</issue><spage>7970</spage><epage>7975</epage><pages>7970-7975</pages><issn>1530-6984</issn><eissn>1530-6992</eissn><abstract>Filamentary-based oxide resistive memory is considered as a disruptive technology for nonvolatile data storage and reconfigurable logic. Currently accepted models explain the resistive switching in these devices through the presence/absence of a conductive filament (CF) that is described as a reversible nanosized valence-change in an oxide material. During device operation, the CF cycles billion of times at subnanosecond speed, using few tens of microamperes as operating current and thus determines the whole device’s performance. Despite its importance, the CF observation is hampered by the small filament size and its minimal compositional difference with the surrounding material. Here we show an experimental solution to this problem and provide the three-dimensional (3D) characterization of the CF in a scaled device. For this purpose we have recently developed a tomography technique which combines the high spatial resolution of scanning probe microscopy with subnanometer precision in material removal, leading to a true 3D-probing metrology concept. We locate and characterize in three-dimensions the nanometric volume of the conductive filament in state-of-the-art bipolar oxide-based devices. Our measurements demonstrate that the switching occurs through the formation of a single conductive filament. The filaments exhibit sizes below 10 nm and present a constriction near the oxygen-inert electrode. Finally, different atomic-size contacts are observed as a function of the programming current, providing evidence for the filament’s nature as a defects modulated quantum contact.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>26523952</pmid><doi>10.1021/acs.nanolett.5b03078</doi><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1530-6984
ispartof Nano letters, 2015-12, Vol.15 (12), p.7970-7975
issn 1530-6984
1530-6992
language eng
recordid cdi_proquest_miscellaneous_1747311508
source ACS Publications
title Imaging the Three-Dimensional Conductive Channel in Filamentary-Based Oxide Resistive Switching Memory
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T22%3A07%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Imaging%20the%20Three-Dimensional%20Conductive%20Channel%20in%20Filamentary-Based%20Oxide%20Resistive%20Switching%20Memory&rft.jtitle=Nano%20letters&rft.au=Celano,%20Umberto&rft.date=2015-12-09&rft.volume=15&rft.issue=12&rft.spage=7970&rft.epage=7975&rft.pages=7970-7975&rft.issn=1530-6984&rft.eissn=1530-6992&rft_id=info:doi/10.1021/acs.nanolett.5b03078&rft_dat=%3Cproquest_cross%3E1747311508%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1747311508&rft_id=info:pmid/26523952&rfr_iscdi=true