Looking down in the ancestral selection graph: A probabilistic approach to the common ancestor type distribution

In a (two-type) Wright–Fisher diffusion with directional selection and two-way mutation, let x denote today’s frequency of the beneficial type, and given x, let h(x) be the probability that, among all individuals of today’s population, the individual whose progeny will eventually take over in the po...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Theoretical population biology 2015-08, Vol.103, p.27-37
Hauptverfasser: Lenz, Ute, Kluth, Sandra, Baake, Ellen, Wakolbinger, Anton
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 37
container_issue
container_start_page 27
container_title Theoretical population biology
container_volume 103
creator Lenz, Ute
Kluth, Sandra
Baake, Ellen
Wakolbinger, Anton
description In a (two-type) Wright–Fisher diffusion with directional selection and two-way mutation, let x denote today’s frequency of the beneficial type, and given x, let h(x) be the probability that, among all individuals of today’s population, the individual whose progeny will eventually take over in the population is of the beneficial type. Fearnhead (2002) and Taylor (2007) obtained a series representation for h(x). We develop a construction that contains elements of both the ancestral selection graph and the lookdown construction and includes pruning of certain lines upon mutation. Besides being interesting in its own right, this construction allows a transparent derivation of the series coefficients of h(x) and gives them a probabilistic meaning.
doi_str_mv 10.1016/j.tpb.2015.01.005
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1746888710</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0040580915000362</els_id><sourcerecordid>1746888710</sourcerecordid><originalsourceid>FETCH-LOGICAL-c386t-55d4f6ea38d5994a45b7be1fcaf6266ee5483c4eab77c53f10255dcd276adf953</originalsourceid><addsrcrecordid>eNqFkcFO3DAURa0KVKbQD-gGeckm6XMcOw6sEGpppZG6gbXl2C-MhyRO7QyIv6-nQ1nSlWXp3KOnewn5wqBkwOTXbbnMXVkBEyWwEkB8ICsGrSyAV-KIrABqKISC9oR8SmkLAIpx_pGcVEK1jFdyReZ1CI9-eqAuPE_UT3TZIDWTxbREM9CEA9rFh4k-RDNvLuk1nWPoTOcHnxZvqZnz39gNXcLfqA3jmOmDIUS6vMxIXWaj73Z70Rk57s2Q8PPre0ruv3-7u_lRrH_d_ry5XheWK7kUQri6l2i4cqJta1OLrumQ9db0spISUdSK2xpN1zRW8J5BlSPWVY00rm8FPyUXB2--7_cuH6NHnywOg5kw7JJmTS2VUg2D_6OylUxJyfZWdkBtDClF7PUc_Wjii2ag95vorc6b6P0mGpjOm-TM-at-143o3hL_RsjA1QHA3MeTx6iT9ZgbdD7m9rUL_h39H2IPnjM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1696186615</pqid></control><display><type>article</type><title>Looking down in the ancestral selection graph: A probabilistic approach to the common ancestor type distribution</title><source>MEDLINE</source><source>ScienceDirect Journals (5 years ago - present)</source><creator>Lenz, Ute ; Kluth, Sandra ; Baake, Ellen ; Wakolbinger, Anton</creator><creatorcontrib>Lenz, Ute ; Kluth, Sandra ; Baake, Ellen ; Wakolbinger, Anton</creatorcontrib><description>In a (two-type) Wright–Fisher diffusion with directional selection and two-way mutation, let x denote today’s frequency of the beneficial type, and given x, let h(x) be the probability that, among all individuals of today’s population, the individual whose progeny will eventually take over in the population is of the beneficial type. Fearnhead (2002) and Taylor (2007) obtained a series representation for h(x). We develop a construction that contains elements of both the ancestral selection graph and the lookdown construction and includes pruning of certain lines upon mutation. Besides being interesting in its own right, this construction allows a transparent derivation of the series coefficients of h(x) and gives them a probabilistic meaning.</description><identifier>ISSN: 0040-5809</identifier><identifier>EISSN: 1096-0325</identifier><identifier>DOI: 10.1016/j.tpb.2015.01.005</identifier><identifier>PMID: 25891326</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Ancestral selection graph ; Common ancestor type distribution ; Lookdown graph ; Mutation ; Probability ; Pruning ; Selection, Genetic ; Wright–Fisher diffusion with selection and mutation</subject><ispartof>Theoretical population biology, 2015-08, Vol.103, p.27-37</ispartof><rights>2015 Elsevier Inc.</rights><rights>Copyright © 2015 Elsevier Inc. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c386t-55d4f6ea38d5994a45b7be1fcaf6266ee5483c4eab77c53f10255dcd276adf953</citedby><cites>FETCH-LOGICAL-c386t-55d4f6ea38d5994a45b7be1fcaf6266ee5483c4eab77c53f10255dcd276adf953</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.tpb.2015.01.005$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3548,27923,27924,45994</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25891326$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Lenz, Ute</creatorcontrib><creatorcontrib>Kluth, Sandra</creatorcontrib><creatorcontrib>Baake, Ellen</creatorcontrib><creatorcontrib>Wakolbinger, Anton</creatorcontrib><title>Looking down in the ancestral selection graph: A probabilistic approach to the common ancestor type distribution</title><title>Theoretical population biology</title><addtitle>Theor Popul Biol</addtitle><description>In a (two-type) Wright–Fisher diffusion with directional selection and two-way mutation, let x denote today’s frequency of the beneficial type, and given x, let h(x) be the probability that, among all individuals of today’s population, the individual whose progeny will eventually take over in the population is of the beneficial type. Fearnhead (2002) and Taylor (2007) obtained a series representation for h(x). We develop a construction that contains elements of both the ancestral selection graph and the lookdown construction and includes pruning of certain lines upon mutation. Besides being interesting in its own right, this construction allows a transparent derivation of the series coefficients of h(x) and gives them a probabilistic meaning.</description><subject>Ancestral selection graph</subject><subject>Common ancestor type distribution</subject><subject>Lookdown graph</subject><subject>Mutation</subject><subject>Probability</subject><subject>Pruning</subject><subject>Selection, Genetic</subject><subject>Wright–Fisher diffusion with selection and mutation</subject><issn>0040-5809</issn><issn>1096-0325</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkcFO3DAURa0KVKbQD-gGeckm6XMcOw6sEGpppZG6gbXl2C-MhyRO7QyIv6-nQ1nSlWXp3KOnewn5wqBkwOTXbbnMXVkBEyWwEkB8ICsGrSyAV-KIrABqKISC9oR8SmkLAIpx_pGcVEK1jFdyReZ1CI9-eqAuPE_UT3TZIDWTxbREM9CEA9rFh4k-RDNvLuk1nWPoTOcHnxZvqZnz39gNXcLfqA3jmOmDIUS6vMxIXWaj73Z70Rk57s2Q8PPre0ruv3-7u_lRrH_d_ry5XheWK7kUQri6l2i4cqJta1OLrumQ9db0spISUdSK2xpN1zRW8J5BlSPWVY00rm8FPyUXB2--7_cuH6NHnywOg5kw7JJmTS2VUg2D_6OylUxJyfZWdkBtDClF7PUc_Wjii2ag95vorc6b6P0mGpjOm-TM-at-143o3hL_RsjA1QHA3MeTx6iT9ZgbdD7m9rUL_h39H2IPnjM</recordid><startdate>201508</startdate><enddate>201508</enddate><creator>Lenz, Ute</creator><creator>Kluth, Sandra</creator><creator>Baake, Ellen</creator><creator>Wakolbinger, Anton</creator><general>Elsevier Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7SN</scope><scope>C1K</scope></search><sort><creationdate>201508</creationdate><title>Looking down in the ancestral selection graph: A probabilistic approach to the common ancestor type distribution</title><author>Lenz, Ute ; Kluth, Sandra ; Baake, Ellen ; Wakolbinger, Anton</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c386t-55d4f6ea38d5994a45b7be1fcaf6266ee5483c4eab77c53f10255dcd276adf953</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Ancestral selection graph</topic><topic>Common ancestor type distribution</topic><topic>Lookdown graph</topic><topic>Mutation</topic><topic>Probability</topic><topic>Pruning</topic><topic>Selection, Genetic</topic><topic>Wright–Fisher diffusion with selection and mutation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lenz, Ute</creatorcontrib><creatorcontrib>Kluth, Sandra</creatorcontrib><creatorcontrib>Baake, Ellen</creatorcontrib><creatorcontrib>Wakolbinger, Anton</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Ecology Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><jtitle>Theoretical population biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lenz, Ute</au><au>Kluth, Sandra</au><au>Baake, Ellen</au><au>Wakolbinger, Anton</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Looking down in the ancestral selection graph: A probabilistic approach to the common ancestor type distribution</atitle><jtitle>Theoretical population biology</jtitle><addtitle>Theor Popul Biol</addtitle><date>2015-08</date><risdate>2015</risdate><volume>103</volume><spage>27</spage><epage>37</epage><pages>27-37</pages><issn>0040-5809</issn><eissn>1096-0325</eissn><abstract>In a (two-type) Wright–Fisher diffusion with directional selection and two-way mutation, let x denote today’s frequency of the beneficial type, and given x, let h(x) be the probability that, among all individuals of today’s population, the individual whose progeny will eventually take over in the population is of the beneficial type. Fearnhead (2002) and Taylor (2007) obtained a series representation for h(x). We develop a construction that contains elements of both the ancestral selection graph and the lookdown construction and includes pruning of certain lines upon mutation. Besides being interesting in its own right, this construction allows a transparent derivation of the series coefficients of h(x) and gives them a probabilistic meaning.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>25891326</pmid><doi>10.1016/j.tpb.2015.01.005</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0040-5809
ispartof Theoretical population biology, 2015-08, Vol.103, p.27-37
issn 0040-5809
1096-0325
language eng
recordid cdi_proquest_miscellaneous_1746888710
source MEDLINE; ScienceDirect Journals (5 years ago - present)
subjects Ancestral selection graph
Common ancestor type distribution
Lookdown graph
Mutation
Probability
Pruning
Selection, Genetic
Wright–Fisher diffusion with selection and mutation
title Looking down in the ancestral selection graph: A probabilistic approach to the common ancestor type distribution
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T13%3A06%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Looking%20down%20in%20the%20ancestral%20selection%20graph:%20A%20probabilistic%20approach%20to%20the%20common%20ancestor%20type%20distribution&rft.jtitle=Theoretical%20population%20biology&rft.au=Lenz,%20Ute&rft.date=2015-08&rft.volume=103&rft.spage=27&rft.epage=37&rft.pages=27-37&rft.issn=0040-5809&rft.eissn=1096-0325&rft_id=info:doi/10.1016/j.tpb.2015.01.005&rft_dat=%3Cproquest_cross%3E1746888710%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1696186615&rft_id=info:pmid/25891326&rft_els_id=S0040580915000362&rfr_iscdi=true