Looking down in the ancestral selection graph: A probabilistic approach to the common ancestor type distribution
In a (two-type) Wright–Fisher diffusion with directional selection and two-way mutation, let x denote today’s frequency of the beneficial type, and given x, let h(x) be the probability that, among all individuals of today’s population, the individual whose progeny will eventually take over in the po...
Gespeichert in:
Veröffentlicht in: | Theoretical population biology 2015-08, Vol.103, p.27-37 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 37 |
---|---|
container_issue | |
container_start_page | 27 |
container_title | Theoretical population biology |
container_volume | 103 |
creator | Lenz, Ute Kluth, Sandra Baake, Ellen Wakolbinger, Anton |
description | In a (two-type) Wright–Fisher diffusion with directional selection and two-way mutation, let x denote today’s frequency of the beneficial type, and given x, let h(x) be the probability that, among all individuals of today’s population, the individual whose progeny will eventually take over in the population is of the beneficial type. Fearnhead (2002) and Taylor (2007) obtained a series representation for h(x). We develop a construction that contains elements of both the ancestral selection graph and the lookdown construction and includes pruning of certain lines upon mutation. Besides being interesting in its own right, this construction allows a transparent derivation of the series coefficients of h(x) and gives them a probabilistic meaning. |
doi_str_mv | 10.1016/j.tpb.2015.01.005 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1746888710</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0040580915000362</els_id><sourcerecordid>1746888710</sourcerecordid><originalsourceid>FETCH-LOGICAL-c386t-55d4f6ea38d5994a45b7be1fcaf6266ee5483c4eab77c53f10255dcd276adf953</originalsourceid><addsrcrecordid>eNqFkcFO3DAURa0KVKbQD-gGeckm6XMcOw6sEGpppZG6gbXl2C-MhyRO7QyIv6-nQ1nSlWXp3KOnewn5wqBkwOTXbbnMXVkBEyWwEkB8ICsGrSyAV-KIrABqKISC9oR8SmkLAIpx_pGcVEK1jFdyReZ1CI9-eqAuPE_UT3TZIDWTxbREM9CEA9rFh4k-RDNvLuk1nWPoTOcHnxZvqZnz39gNXcLfqA3jmOmDIUS6vMxIXWaj73Z70Rk57s2Q8PPre0ruv3-7u_lRrH_d_ry5XheWK7kUQri6l2i4cqJta1OLrumQ9db0spISUdSK2xpN1zRW8J5BlSPWVY00rm8FPyUXB2--7_cuH6NHnywOg5kw7JJmTS2VUg2D_6OylUxJyfZWdkBtDClF7PUc_Wjii2ag95vorc6b6P0mGpjOm-TM-at-143o3hL_RsjA1QHA3MeTx6iT9ZgbdD7m9rUL_h39H2IPnjM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1696186615</pqid></control><display><type>article</type><title>Looking down in the ancestral selection graph: A probabilistic approach to the common ancestor type distribution</title><source>MEDLINE</source><source>ScienceDirect Journals (5 years ago - present)</source><creator>Lenz, Ute ; Kluth, Sandra ; Baake, Ellen ; Wakolbinger, Anton</creator><creatorcontrib>Lenz, Ute ; Kluth, Sandra ; Baake, Ellen ; Wakolbinger, Anton</creatorcontrib><description>In a (two-type) Wright–Fisher diffusion with directional selection and two-way mutation, let x denote today’s frequency of the beneficial type, and given x, let h(x) be the probability that, among all individuals of today’s population, the individual whose progeny will eventually take over in the population is of the beneficial type. Fearnhead (2002) and Taylor (2007) obtained a series representation for h(x). We develop a construction that contains elements of both the ancestral selection graph and the lookdown construction and includes pruning of certain lines upon mutation. Besides being interesting in its own right, this construction allows a transparent derivation of the series coefficients of h(x) and gives them a probabilistic meaning.</description><identifier>ISSN: 0040-5809</identifier><identifier>EISSN: 1096-0325</identifier><identifier>DOI: 10.1016/j.tpb.2015.01.005</identifier><identifier>PMID: 25891326</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Ancestral selection graph ; Common ancestor type distribution ; Lookdown graph ; Mutation ; Probability ; Pruning ; Selection, Genetic ; Wright–Fisher diffusion with selection and mutation</subject><ispartof>Theoretical population biology, 2015-08, Vol.103, p.27-37</ispartof><rights>2015 Elsevier Inc.</rights><rights>Copyright © 2015 Elsevier Inc. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c386t-55d4f6ea38d5994a45b7be1fcaf6266ee5483c4eab77c53f10255dcd276adf953</citedby><cites>FETCH-LOGICAL-c386t-55d4f6ea38d5994a45b7be1fcaf6266ee5483c4eab77c53f10255dcd276adf953</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.tpb.2015.01.005$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3548,27923,27924,45994</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25891326$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Lenz, Ute</creatorcontrib><creatorcontrib>Kluth, Sandra</creatorcontrib><creatorcontrib>Baake, Ellen</creatorcontrib><creatorcontrib>Wakolbinger, Anton</creatorcontrib><title>Looking down in the ancestral selection graph: A probabilistic approach to the common ancestor type distribution</title><title>Theoretical population biology</title><addtitle>Theor Popul Biol</addtitle><description>In a (two-type) Wright–Fisher diffusion with directional selection and two-way mutation, let x denote today’s frequency of the beneficial type, and given x, let h(x) be the probability that, among all individuals of today’s population, the individual whose progeny will eventually take over in the population is of the beneficial type. Fearnhead (2002) and Taylor (2007) obtained a series representation for h(x). We develop a construction that contains elements of both the ancestral selection graph and the lookdown construction and includes pruning of certain lines upon mutation. Besides being interesting in its own right, this construction allows a transparent derivation of the series coefficients of h(x) and gives them a probabilistic meaning.</description><subject>Ancestral selection graph</subject><subject>Common ancestor type distribution</subject><subject>Lookdown graph</subject><subject>Mutation</subject><subject>Probability</subject><subject>Pruning</subject><subject>Selection, Genetic</subject><subject>Wright–Fisher diffusion with selection and mutation</subject><issn>0040-5809</issn><issn>1096-0325</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkcFO3DAURa0KVKbQD-gGeckm6XMcOw6sEGpppZG6gbXl2C-MhyRO7QyIv6-nQ1nSlWXp3KOnewn5wqBkwOTXbbnMXVkBEyWwEkB8ICsGrSyAV-KIrABqKISC9oR8SmkLAIpx_pGcVEK1jFdyReZ1CI9-eqAuPE_UT3TZIDWTxbREM9CEA9rFh4k-RDNvLuk1nWPoTOcHnxZvqZnz39gNXcLfqA3jmOmDIUS6vMxIXWaj73Z70Rk57s2Q8PPre0ruv3-7u_lRrH_d_ry5XheWK7kUQri6l2i4cqJta1OLrumQ9db0spISUdSK2xpN1zRW8J5BlSPWVY00rm8FPyUXB2--7_cuH6NHnywOg5kw7JJmTS2VUg2D_6OylUxJyfZWdkBtDClF7PUc_Wjii2ag95vorc6b6P0mGpjOm-TM-at-143o3hL_RsjA1QHA3MeTx6iT9ZgbdD7m9rUL_h39H2IPnjM</recordid><startdate>201508</startdate><enddate>201508</enddate><creator>Lenz, Ute</creator><creator>Kluth, Sandra</creator><creator>Baake, Ellen</creator><creator>Wakolbinger, Anton</creator><general>Elsevier Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7SN</scope><scope>C1K</scope></search><sort><creationdate>201508</creationdate><title>Looking down in the ancestral selection graph: A probabilistic approach to the common ancestor type distribution</title><author>Lenz, Ute ; Kluth, Sandra ; Baake, Ellen ; Wakolbinger, Anton</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c386t-55d4f6ea38d5994a45b7be1fcaf6266ee5483c4eab77c53f10255dcd276adf953</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Ancestral selection graph</topic><topic>Common ancestor type distribution</topic><topic>Lookdown graph</topic><topic>Mutation</topic><topic>Probability</topic><topic>Pruning</topic><topic>Selection, Genetic</topic><topic>Wright–Fisher diffusion with selection and mutation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lenz, Ute</creatorcontrib><creatorcontrib>Kluth, Sandra</creatorcontrib><creatorcontrib>Baake, Ellen</creatorcontrib><creatorcontrib>Wakolbinger, Anton</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Ecology Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><jtitle>Theoretical population biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lenz, Ute</au><au>Kluth, Sandra</au><au>Baake, Ellen</au><au>Wakolbinger, Anton</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Looking down in the ancestral selection graph: A probabilistic approach to the common ancestor type distribution</atitle><jtitle>Theoretical population biology</jtitle><addtitle>Theor Popul Biol</addtitle><date>2015-08</date><risdate>2015</risdate><volume>103</volume><spage>27</spage><epage>37</epage><pages>27-37</pages><issn>0040-5809</issn><eissn>1096-0325</eissn><abstract>In a (two-type) Wright–Fisher diffusion with directional selection and two-way mutation, let x denote today’s frequency of the beneficial type, and given x, let h(x) be the probability that, among all individuals of today’s population, the individual whose progeny will eventually take over in the population is of the beneficial type. Fearnhead (2002) and Taylor (2007) obtained a series representation for h(x). We develop a construction that contains elements of both the ancestral selection graph and the lookdown construction and includes pruning of certain lines upon mutation. Besides being interesting in its own right, this construction allows a transparent derivation of the series coefficients of h(x) and gives them a probabilistic meaning.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>25891326</pmid><doi>10.1016/j.tpb.2015.01.005</doi><tpages>11</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0040-5809 |
ispartof | Theoretical population biology, 2015-08, Vol.103, p.27-37 |
issn | 0040-5809 1096-0325 |
language | eng |
recordid | cdi_proquest_miscellaneous_1746888710 |
source | MEDLINE; ScienceDirect Journals (5 years ago - present) |
subjects | Ancestral selection graph Common ancestor type distribution Lookdown graph Mutation Probability Pruning Selection, Genetic Wright–Fisher diffusion with selection and mutation |
title | Looking down in the ancestral selection graph: A probabilistic approach to the common ancestor type distribution |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T13%3A06%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Looking%20down%20in%20the%20ancestral%20selection%20graph:%20A%20probabilistic%20approach%20to%20the%20common%20ancestor%20type%20distribution&rft.jtitle=Theoretical%20population%20biology&rft.au=Lenz,%20Ute&rft.date=2015-08&rft.volume=103&rft.spage=27&rft.epage=37&rft.pages=27-37&rft.issn=0040-5809&rft.eissn=1096-0325&rft_id=info:doi/10.1016/j.tpb.2015.01.005&rft_dat=%3Cproquest_cross%3E1746888710%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1696186615&rft_id=info:pmid/25891326&rft_els_id=S0040580915000362&rfr_iscdi=true |