Modeling of an RO water desalination unit using neural networks

In this paper, a feedforward neural network (NN) model is developed to predict the performance of a reverse osmosis (RO) experimental setup, which uses a FilmTec SW30 membrane. Sixty-three experimental data were generated for training and testing the network. The considered ranges of operating condi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Chemical engineering journal (Lausanne, Switzerland : 1996) Switzerland : 1996), 2005-11, Vol.114 (1), p.139-143
Hauptverfasser: Abbas, Abderrahim, Al-Bastaki, Nader
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 143
container_issue 1
container_start_page 139
container_title Chemical engineering journal (Lausanne, Switzerland : 1996)
container_volume 114
creator Abbas, Abderrahim
Al-Bastaki, Nader
description In this paper, a feedforward neural network (NN) model is developed to predict the performance of a reverse osmosis (RO) experimental setup, which uses a FilmTec SW30 membrane. Sixty-three experimental data were generated for training and testing the network. The considered ranges of operating conditions were chosen so as to include those encountered in a large number of the worldwide brackish water and seawater RO plants. The NN was fed with three inputs: the feed pressure, temperature and salt concentration to predict the water permeate rate. The fast Levenberg–Marquardt (LM) optimization technique was employed for training the NN. The network learned the input–output mappings with accuracy for interpolation cases, but not for extrapolation.
doi_str_mv 10.1016/j.cej.2005.07.016
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_17467903</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S138589470500313X</els_id><sourcerecordid>17467903</sourcerecordid><originalsourceid>FETCH-LOGICAL-c395t-f6dfde8dad7f867d8be8e86d7a78d9746b227ac3ccf4db59dd8d60efa87746583</originalsourceid><addsrcrecordid>eNp9kE9LAzEQxYMoWKsfwNte9LZrstndZPEgUuofqBREzyFNJpJ1m9Rk1-K3N6UFb57e8OY3M8xD6JLggmDS3HSFgq4oMa4LzIrkHKEJ4YzmtCTlcaopr3PeVuwUncXYYYyblrQTdPfiNfTWfWTeZNJlr8tsKwcImYYoky8H6102OjtkY9xhDsYg-yTD1ofPeI5OjOwjXBx0it4f5m-zp3yxfHye3S9yRdt6yE2jjQaupWaGN0zzFXDgjWaScd2yqlmVJZOKKmUqvapbrbluMBjJWWrWnE7R9X7vJvivEeIg1jYq6HvpwI9RkISxFtMEkj2ogo8xgBGbYNcy_AiCxS4q0YkUldhFJTATyUkzV4flMirZmyCdsvFvkJUVp4wk7nbPQfr020IQUVlwCrQNoAahvf3nyi-gjX8W</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>17467903</pqid></control><display><type>article</type><title>Modeling of an RO water desalination unit using neural networks</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Abbas, Abderrahim ; Al-Bastaki, Nader</creator><creatorcontrib>Abbas, Abderrahim ; Al-Bastaki, Nader</creatorcontrib><description>In this paper, a feedforward neural network (NN) model is developed to predict the performance of a reverse osmosis (RO) experimental setup, which uses a FilmTec SW30 membrane. Sixty-three experimental data were generated for training and testing the network. The considered ranges of operating conditions were chosen so as to include those encountered in a large number of the worldwide brackish water and seawater RO plants. The NN was fed with three inputs: the feed pressure, temperature and salt concentration to predict the water permeate rate. The fast Levenberg–Marquardt (LM) optimization technique was employed for training the NN. The network learned the input–output mappings with accuracy for interpolation cases, but not for extrapolation.</description><identifier>ISSN: 1385-8947</identifier><identifier>EISSN: 1873-3212</identifier><identifier>DOI: 10.1016/j.cej.2005.07.016</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Applied sciences ; Chemical engineering ; Drinking water and swimming-pool water. Desalination ; Exact sciences and technology ; Membrane separation (reverse osmosis, dialysis...) ; Neural networks ; Pollution ; Process modeling ; Reverse osmosis ; Water desalination ; Water treatment and pollution</subject><ispartof>Chemical engineering journal (Lausanne, Switzerland : 1996), 2005-11, Vol.114 (1), p.139-143</ispartof><rights>2005 Elsevier B.V.</rights><rights>2005 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c395t-f6dfde8dad7f867d8be8e86d7a78d9746b227ac3ccf4db59dd8d60efa87746583</citedby><cites>FETCH-LOGICAL-c395t-f6dfde8dad7f867d8be8e86d7a78d9746b227ac3ccf4db59dd8d60efa87746583</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S138589470500313X$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=17248371$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Abbas, Abderrahim</creatorcontrib><creatorcontrib>Al-Bastaki, Nader</creatorcontrib><title>Modeling of an RO water desalination unit using neural networks</title><title>Chemical engineering journal (Lausanne, Switzerland : 1996)</title><description>In this paper, a feedforward neural network (NN) model is developed to predict the performance of a reverse osmosis (RO) experimental setup, which uses a FilmTec SW30 membrane. Sixty-three experimental data were generated for training and testing the network. The considered ranges of operating conditions were chosen so as to include those encountered in a large number of the worldwide brackish water and seawater RO plants. The NN was fed with three inputs: the feed pressure, temperature and salt concentration to predict the water permeate rate. The fast Levenberg–Marquardt (LM) optimization technique was employed for training the NN. The network learned the input–output mappings with accuracy for interpolation cases, but not for extrapolation.</description><subject>Applied sciences</subject><subject>Chemical engineering</subject><subject>Drinking water and swimming-pool water. Desalination</subject><subject>Exact sciences and technology</subject><subject>Membrane separation (reverse osmosis, dialysis...)</subject><subject>Neural networks</subject><subject>Pollution</subject><subject>Process modeling</subject><subject>Reverse osmosis</subject><subject>Water desalination</subject><subject>Water treatment and pollution</subject><issn>1385-8947</issn><issn>1873-3212</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><recordid>eNp9kE9LAzEQxYMoWKsfwNte9LZrstndZPEgUuofqBREzyFNJpJ1m9Rk1-K3N6UFb57e8OY3M8xD6JLggmDS3HSFgq4oMa4LzIrkHKEJ4YzmtCTlcaopr3PeVuwUncXYYYyblrQTdPfiNfTWfWTeZNJlr8tsKwcImYYoky8H6102OjtkY9xhDsYg-yTD1ofPeI5OjOwjXBx0it4f5m-zp3yxfHye3S9yRdt6yE2jjQaupWaGN0zzFXDgjWaScd2yqlmVJZOKKmUqvapbrbluMBjJWWrWnE7R9X7vJvivEeIg1jYq6HvpwI9RkISxFtMEkj2ogo8xgBGbYNcy_AiCxS4q0YkUldhFJTATyUkzV4flMirZmyCdsvFvkJUVp4wk7nbPQfr020IQUVlwCrQNoAahvf3nyi-gjX8W</recordid><startdate>20051115</startdate><enddate>20051115</enddate><creator>Abbas, Abderrahim</creator><creator>Al-Bastaki, Nader</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QH</scope><scope>7QO</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope></search><sort><creationdate>20051115</creationdate><title>Modeling of an RO water desalination unit using neural networks</title><author>Abbas, Abderrahim ; Al-Bastaki, Nader</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c395t-f6dfde8dad7f867d8be8e86d7a78d9746b227ac3ccf4db59dd8d60efa87746583</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Applied sciences</topic><topic>Chemical engineering</topic><topic>Drinking water and swimming-pool water. Desalination</topic><topic>Exact sciences and technology</topic><topic>Membrane separation (reverse osmosis, dialysis...)</topic><topic>Neural networks</topic><topic>Pollution</topic><topic>Process modeling</topic><topic>Reverse osmosis</topic><topic>Water desalination</topic><topic>Water treatment and pollution</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Abbas, Abderrahim</creatorcontrib><creatorcontrib>Al-Bastaki, Nader</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Aqualine</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>Chemical engineering journal (Lausanne, Switzerland : 1996)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Abbas, Abderrahim</au><au>Al-Bastaki, Nader</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Modeling of an RO water desalination unit using neural networks</atitle><jtitle>Chemical engineering journal (Lausanne, Switzerland : 1996)</jtitle><date>2005-11-15</date><risdate>2005</risdate><volume>114</volume><issue>1</issue><spage>139</spage><epage>143</epage><pages>139-143</pages><issn>1385-8947</issn><eissn>1873-3212</eissn><abstract>In this paper, a feedforward neural network (NN) model is developed to predict the performance of a reverse osmosis (RO) experimental setup, which uses a FilmTec SW30 membrane. Sixty-three experimental data were generated for training and testing the network. The considered ranges of operating conditions were chosen so as to include those encountered in a large number of the worldwide brackish water and seawater RO plants. The NN was fed with three inputs: the feed pressure, temperature and salt concentration to predict the water permeate rate. The fast Levenberg–Marquardt (LM) optimization technique was employed for training the NN. The network learned the input–output mappings with accuracy for interpolation cases, but not for extrapolation.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.cej.2005.07.016</doi><tpages>5</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1385-8947
ispartof Chemical engineering journal (Lausanne, Switzerland : 1996), 2005-11, Vol.114 (1), p.139-143
issn 1385-8947
1873-3212
language eng
recordid cdi_proquest_miscellaneous_17467903
source Elsevier ScienceDirect Journals Complete
subjects Applied sciences
Chemical engineering
Drinking water and swimming-pool water. Desalination
Exact sciences and technology
Membrane separation (reverse osmosis, dialysis...)
Neural networks
Pollution
Process modeling
Reverse osmosis
Water desalination
Water treatment and pollution
title Modeling of an RO water desalination unit using neural networks
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T06%3A35%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Modeling%20of%20an%20RO%20water%20desalination%20unit%20using%20neural%20networks&rft.jtitle=Chemical%20engineering%20journal%20(Lausanne,%20Switzerland%20:%201996)&rft.au=Abbas,%20Abderrahim&rft.date=2005-11-15&rft.volume=114&rft.issue=1&rft.spage=139&rft.epage=143&rft.pages=139-143&rft.issn=1385-8947&rft.eissn=1873-3212&rft_id=info:doi/10.1016/j.cej.2005.07.016&rft_dat=%3Cproquest_cross%3E17467903%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=17467903&rft_id=info:pmid/&rft_els_id=S138589470500313X&rfr_iscdi=true