Modeling of an RO water desalination unit using neural networks

In this paper, a feedforward neural network (NN) model is developed to predict the performance of a reverse osmosis (RO) experimental setup, which uses a FilmTec SW30 membrane. Sixty-three experimental data were generated for training and testing the network. The considered ranges of operating condi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Chemical engineering journal (Lausanne, Switzerland : 1996) Switzerland : 1996), 2005-11, Vol.114 (1), p.139-143
Hauptverfasser: Abbas, Abderrahim, Al-Bastaki, Nader
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, a feedforward neural network (NN) model is developed to predict the performance of a reverse osmosis (RO) experimental setup, which uses a FilmTec SW30 membrane. Sixty-three experimental data were generated for training and testing the network. The considered ranges of operating conditions were chosen so as to include those encountered in a large number of the worldwide brackish water and seawater RO plants. The NN was fed with three inputs: the feed pressure, temperature and salt concentration to predict the water permeate rate. The fast Levenberg–Marquardt (LM) optimization technique was employed for training the NN. The network learned the input–output mappings with accuracy for interpolation cases, but not for extrapolation.
ISSN:1385-8947
1873-3212
DOI:10.1016/j.cej.2005.07.016