Bisphosphonate-Mediated Gene Vector Delivery from the Metal Surfaces of Stents

The clinical use of metallic expandable intravascular stents has resulted in improved therapeutic outcomes for coronary artery disease. However, arterial reobstruction after stenting, in-stent restenosis, remains an important problem. Gene therapy to treat in-stent restenosis by using gene vector de...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the National Academy of Sciences - PNAS 2006-01, Vol.103 (1), p.159-164
Hauptverfasser: Fishbein, Ilia, Alferiev, Ivan S., Nyanguile, Origene, Gaster, Richard, Vohs, John M., Wong, Gordon S., Felderman, Howard, Chen, I-Wei, Choi, Hoon, Wilensky, Robert L., Levy, Robert J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 164
container_issue 1
container_start_page 159
container_title Proceedings of the National Academy of Sciences - PNAS
container_volume 103
creator Fishbein, Ilia
Alferiev, Ivan S.
Nyanguile, Origene
Gaster, Richard
Vohs, John M.
Wong, Gordon S.
Felderman, Howard
Chen, I-Wei
Choi, Hoon
Wilensky, Robert L.
Levy, Robert J.
description The clinical use of metallic expandable intravascular stents has resulted in improved therapeutic outcomes for coronary artery disease. However, arterial reobstruction after stenting, in-stent restenosis, remains an important problem. Gene therapy to treat in-stent restenosis by using gene vector delivery from the metallic stent surfaces has never been demonstrated. The present studies investigated the hypothesis that metal-bisphosphonate binding can enable site-specific gene vector delivery from metal surfaces. Polyallylamine bisphosphonate (PAA-BP) was synthesized by using Michael addition methodology. Exposure to aqueous solutions of PAA-BP resulted in the formation of a monomolecular bisphosphonate layer on metal alloy surfaces (steel, nitinol, and cobaltchromium), as demonstrated by x-ray photoelectron spectroscopy. Surface-bound PAA-BP enabled adenoviral (Ad) tethering due to covalent thiol-binding of either anti-Ad antibody or a recombinant Ad-receptor protein, D1. In arterial smooth muscle cell cultures, alloy samples configured with surface-tethered Ad were demonstrated to achieve site-specific transduction with a reporter gene, (GFP). Rat carotid stent angioplasties using metal stents exposed to aqueous PAA-BP and derivatized with anti-knob antibody or D1 resulted in extensive localized Ad-GFP expression in the arterial wall. In a separate study with a model therapeutic vector, Adinducible nitric oxide synthase (iNOS) attached to the bisphosphonate-treated metal stent surface via D1, significant inhibition of restenosis was demonstrated (neointimal/media ratio 1.68 ± 0.27 and 3.4 ± 0.35; Ad-iNOS vs. control, P < 0.01). It is concluded that effective gene vector delivery from metallic stent surfaces can be achieved by using this approach.
doi_str_mv 10.1073/pnas.0502945102
format Article
fullrecord <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_17463342</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>30048268</jstor_id><sourcerecordid>30048268</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4392-32c5db8bfd46d73860a17604cd74e0c87fcea2095473ee2ff821f53160db2c0a3</originalsourceid><addsrcrecordid>eNqFkb1vFDEQxS1ERI5ATQVaUaTbZPyx9rpBggQSpIQUCbSWzzvm9rS3vtjeiPz3-JRTLlBAMZpifvPm2Y-QNxSOKCh-vB5tOoIGmBYNBfaMzChoWkuh4TmZATBVt4KJffIypSUA6KaFF2SfSq6oUGpGvn3q03oRNjXajPUldn3pXXWGI1Y_0OUQq1Mc-juM95WPYVXlBVaXmO1QXU_RW4epCr66zjjm9IrseTskfL3tB-T7l883J-f1xdXZ15OPF7UTXLOaM9d083buOyE7xVsJlioJwnVKILhWeYeWFbdCcUTmfcuobziV0M2ZA8sPyIcH3fU0X2Hnyu1oB7OO_crGexNsb_6cjP3C_Ax3hnKqWqWKwOFWIIbbCVM2qz45HAY7YpiSUSAbCbz5L0iVkJwLVsD3f4HLMMWx_IJhQLnmmuoCHT9ALoaUIvpHyxTMJlGzSdTsEi0b756-dMdvI3xicLO5k-OGGtpo46dhyPgrF_Dtv8DdfJlK6I8ABxAtky3_DWiwvU0</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>201393919</pqid></control><display><type>article</type><title>Bisphosphonate-Mediated Gene Vector Delivery from the Metal Surfaces of Stents</title><source>MEDLINE</source><source>JSTOR Archive Collection A-Z Listing</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Fishbein, Ilia ; Alferiev, Ivan S. ; Nyanguile, Origene ; Gaster, Richard ; Vohs, John M. ; Wong, Gordon S. ; Felderman, Howard ; Chen, I-Wei ; Choi, Hoon ; Wilensky, Robert L. ; Levy, Robert J.</creator><creatorcontrib>Fishbein, Ilia ; Alferiev, Ivan S. ; Nyanguile, Origene ; Gaster, Richard ; Vohs, John M. ; Wong, Gordon S. ; Felderman, Howard ; Chen, I-Wei ; Choi, Hoon ; Wilensky, Robert L. ; Levy, Robert J.</creatorcontrib><description>The clinical use of metallic expandable intravascular stents has resulted in improved therapeutic outcomes for coronary artery disease. However, arterial reobstruction after stenting, in-stent restenosis, remains an important problem. Gene therapy to treat in-stent restenosis by using gene vector delivery from the metallic stent surfaces has never been demonstrated. The present studies investigated the hypothesis that metal-bisphosphonate binding can enable site-specific gene vector delivery from metal surfaces. Polyallylamine bisphosphonate (PAA-BP) was synthesized by using Michael addition methodology. Exposure to aqueous solutions of PAA-BP resulted in the formation of a monomolecular bisphosphonate layer on metal alloy surfaces (steel, nitinol, and cobaltchromium), as demonstrated by x-ray photoelectron spectroscopy. Surface-bound PAA-BP enabled adenoviral (Ad) tethering due to covalent thiol-binding of either anti-Ad antibody or a recombinant Ad-receptor protein, D1. In arterial smooth muscle cell cultures, alloy samples configured with surface-tethered Ad were demonstrated to achieve site-specific transduction with a reporter gene, (GFP). Rat carotid stent angioplasties using metal stents exposed to aqueous PAA-BP and derivatized with anti-knob antibody or D1 resulted in extensive localized Ad-GFP expression in the arterial wall. In a separate study with a model therapeutic vector, Adinducible nitric oxide synthase (iNOS) attached to the bisphosphonate-treated metal stent surface via D1, significant inhibition of restenosis was demonstrated (neointimal/media ratio 1.68 ± 0.27 and 3.4 ± 0.35; Ad-iNOS vs. control, P &lt; 0.01). It is concluded that effective gene vector delivery from metallic stent surfaces can be achieved by using this approach.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.0502945102</identifier><identifier>PMID: 16371477</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Adenoviridae - metabolism ; Alloys ; Angioplasty ; Angioplasty - methods ; Animals ; Antibodies ; Arteries ; Biological Sciences ; Blood vessels ; Cardiovascular disease ; Cells, Cultured ; Coronary Artery Disease - complications ; Coronary Artery Disease - surgery ; Diphosphonates ; Diphosphonates - metabolism ; Gene therapy ; Genes, Reporter - genetics ; Genetic Therapy - methods ; Genetic vectors ; Genetic Vectors - metabolism ; Genetic Vectors - therapeutic use ; Graft Occlusion, Vascular - etiology ; Graft Occlusion, Vascular - therapy ; Green Fluorescent Proteins - metabolism ; Male ; Medical treatment ; Metal surfaces ; Metals ; Nitric Oxide Synthase Type II - metabolism ; Polyamines - metabolism ; Rats ; Rats, Sprague-Dawley ; Spectrum Analysis ; Steels ; Stents ; Transduction, Genetic - methods</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2006-01, Vol.103 (1), p.159-164</ispartof><rights>Copyright 2006 National Academy of Sciences of the United States of America</rights><rights>Copyright National Academy of Sciences Jan 3, 2006</rights><rights>Copyright © 2006, The National Academy of Sciences 2006</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4392-32c5db8bfd46d73860a17604cd74e0c87fcea2095473ee2ff821f53160db2c0a3</citedby><cites>FETCH-LOGICAL-c4392-32c5db8bfd46d73860a17604cd74e0c87fcea2095473ee2ff821f53160db2c0a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.pnas.org/content/103/1.cover.gif</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/30048268$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/30048268$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,727,780,784,803,885,27923,27924,53790,53792,58016,58249</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/16371477$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Fishbein, Ilia</creatorcontrib><creatorcontrib>Alferiev, Ivan S.</creatorcontrib><creatorcontrib>Nyanguile, Origene</creatorcontrib><creatorcontrib>Gaster, Richard</creatorcontrib><creatorcontrib>Vohs, John M.</creatorcontrib><creatorcontrib>Wong, Gordon S.</creatorcontrib><creatorcontrib>Felderman, Howard</creatorcontrib><creatorcontrib>Chen, I-Wei</creatorcontrib><creatorcontrib>Choi, Hoon</creatorcontrib><creatorcontrib>Wilensky, Robert L.</creatorcontrib><creatorcontrib>Levy, Robert J.</creatorcontrib><title>Bisphosphonate-Mediated Gene Vector Delivery from the Metal Surfaces of Stents</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>The clinical use of metallic expandable intravascular stents has resulted in improved therapeutic outcomes for coronary artery disease. However, arterial reobstruction after stenting, in-stent restenosis, remains an important problem. Gene therapy to treat in-stent restenosis by using gene vector delivery from the metallic stent surfaces has never been demonstrated. The present studies investigated the hypothesis that metal-bisphosphonate binding can enable site-specific gene vector delivery from metal surfaces. Polyallylamine bisphosphonate (PAA-BP) was synthesized by using Michael addition methodology. Exposure to aqueous solutions of PAA-BP resulted in the formation of a monomolecular bisphosphonate layer on metal alloy surfaces (steel, nitinol, and cobaltchromium), as demonstrated by x-ray photoelectron spectroscopy. Surface-bound PAA-BP enabled adenoviral (Ad) tethering due to covalent thiol-binding of either anti-Ad antibody or a recombinant Ad-receptor protein, D1. In arterial smooth muscle cell cultures, alloy samples configured with surface-tethered Ad were demonstrated to achieve site-specific transduction with a reporter gene, (GFP). Rat carotid stent angioplasties using metal stents exposed to aqueous PAA-BP and derivatized with anti-knob antibody or D1 resulted in extensive localized Ad-GFP expression in the arterial wall. In a separate study with a model therapeutic vector, Adinducible nitric oxide synthase (iNOS) attached to the bisphosphonate-treated metal stent surface via D1, significant inhibition of restenosis was demonstrated (neointimal/media ratio 1.68 ± 0.27 and 3.4 ± 0.35; Ad-iNOS vs. control, P &lt; 0.01). It is concluded that effective gene vector delivery from metallic stent surfaces can be achieved by using this approach.</description><subject>Adenoviridae - metabolism</subject><subject>Alloys</subject><subject>Angioplasty</subject><subject>Angioplasty - methods</subject><subject>Animals</subject><subject>Antibodies</subject><subject>Arteries</subject><subject>Biological Sciences</subject><subject>Blood vessels</subject><subject>Cardiovascular disease</subject><subject>Cells, Cultured</subject><subject>Coronary Artery Disease - complications</subject><subject>Coronary Artery Disease - surgery</subject><subject>Diphosphonates</subject><subject>Diphosphonates - metabolism</subject><subject>Gene therapy</subject><subject>Genes, Reporter - genetics</subject><subject>Genetic Therapy - methods</subject><subject>Genetic vectors</subject><subject>Genetic Vectors - metabolism</subject><subject>Genetic Vectors - therapeutic use</subject><subject>Graft Occlusion, Vascular - etiology</subject><subject>Graft Occlusion, Vascular - therapy</subject><subject>Green Fluorescent Proteins - metabolism</subject><subject>Male</subject><subject>Medical treatment</subject><subject>Metal surfaces</subject><subject>Metals</subject><subject>Nitric Oxide Synthase Type II - metabolism</subject><subject>Polyamines - metabolism</subject><subject>Rats</subject><subject>Rats, Sprague-Dawley</subject><subject>Spectrum Analysis</subject><subject>Steels</subject><subject>Stents</subject><subject>Transduction, Genetic - methods</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkb1vFDEQxS1ERI5ATQVaUaTbZPyx9rpBggQSpIQUCbSWzzvm9rS3vtjeiPz3-JRTLlBAMZpifvPm2Y-QNxSOKCh-vB5tOoIGmBYNBfaMzChoWkuh4TmZATBVt4KJffIypSUA6KaFF2SfSq6oUGpGvn3q03oRNjXajPUldn3pXXWGI1Y_0OUQq1Mc-juM95WPYVXlBVaXmO1QXU_RW4epCr66zjjm9IrseTskfL3tB-T7l883J-f1xdXZ15OPF7UTXLOaM9d083buOyE7xVsJlioJwnVKILhWeYeWFbdCcUTmfcuobziV0M2ZA8sPyIcH3fU0X2Hnyu1oB7OO_crGexNsb_6cjP3C_Ax3hnKqWqWKwOFWIIbbCVM2qz45HAY7YpiSUSAbCbz5L0iVkJwLVsD3f4HLMMWx_IJhQLnmmuoCHT9ALoaUIvpHyxTMJlGzSdTsEi0b756-dMdvI3xicLO5k-OGGtpo46dhyPgrF_Dtv8DdfJlK6I8ABxAtky3_DWiwvU0</recordid><startdate>20060103</startdate><enddate>20060103</enddate><creator>Fishbein, Ilia</creator><creator>Alferiev, Ivan S.</creator><creator>Nyanguile, Origene</creator><creator>Gaster, Richard</creator><creator>Vohs, John M.</creator><creator>Wong, Gordon S.</creator><creator>Felderman, Howard</creator><creator>Chen, I-Wei</creator><creator>Choi, Hoon</creator><creator>Wilensky, Robert L.</creator><creator>Levy, Robert J.</creator><general>National Academy of Sciences</general><general>National Acad Sciences</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20060103</creationdate><title>Bisphosphonate-Mediated Gene Vector Delivery from the Metal Surfaces of Stents</title><author>Fishbein, Ilia ; Alferiev, Ivan S. ; Nyanguile, Origene ; Gaster, Richard ; Vohs, John M. ; Wong, Gordon S. ; Felderman, Howard ; Chen, I-Wei ; Choi, Hoon ; Wilensky, Robert L. ; Levy, Robert J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4392-32c5db8bfd46d73860a17604cd74e0c87fcea2095473ee2ff821f53160db2c0a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Adenoviridae - metabolism</topic><topic>Alloys</topic><topic>Angioplasty</topic><topic>Angioplasty - methods</topic><topic>Animals</topic><topic>Antibodies</topic><topic>Arteries</topic><topic>Biological Sciences</topic><topic>Blood vessels</topic><topic>Cardiovascular disease</topic><topic>Cells, Cultured</topic><topic>Coronary Artery Disease - complications</topic><topic>Coronary Artery Disease - surgery</topic><topic>Diphosphonates</topic><topic>Diphosphonates - metabolism</topic><topic>Gene therapy</topic><topic>Genes, Reporter - genetics</topic><topic>Genetic Therapy - methods</topic><topic>Genetic vectors</topic><topic>Genetic Vectors - metabolism</topic><topic>Genetic Vectors - therapeutic use</topic><topic>Graft Occlusion, Vascular - etiology</topic><topic>Graft Occlusion, Vascular - therapy</topic><topic>Green Fluorescent Proteins - metabolism</topic><topic>Male</topic><topic>Medical treatment</topic><topic>Metal surfaces</topic><topic>Metals</topic><topic>Nitric Oxide Synthase Type II - metabolism</topic><topic>Polyamines - metabolism</topic><topic>Rats</topic><topic>Rats, Sprague-Dawley</topic><topic>Spectrum Analysis</topic><topic>Steels</topic><topic>Stents</topic><topic>Transduction, Genetic - methods</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fishbein, Ilia</creatorcontrib><creatorcontrib>Alferiev, Ivan S.</creatorcontrib><creatorcontrib>Nyanguile, Origene</creatorcontrib><creatorcontrib>Gaster, Richard</creatorcontrib><creatorcontrib>Vohs, John M.</creatorcontrib><creatorcontrib>Wong, Gordon S.</creatorcontrib><creatorcontrib>Felderman, Howard</creatorcontrib><creatorcontrib>Chen, I-Wei</creatorcontrib><creatorcontrib>Choi, Hoon</creatorcontrib><creatorcontrib>Wilensky, Robert L.</creatorcontrib><creatorcontrib>Levy, Robert J.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fishbein, Ilia</au><au>Alferiev, Ivan S.</au><au>Nyanguile, Origene</au><au>Gaster, Richard</au><au>Vohs, John M.</au><au>Wong, Gordon S.</au><au>Felderman, Howard</au><au>Chen, I-Wei</au><au>Choi, Hoon</au><au>Wilensky, Robert L.</au><au>Levy, Robert J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Bisphosphonate-Mediated Gene Vector Delivery from the Metal Surfaces of Stents</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2006-01-03</date><risdate>2006</risdate><volume>103</volume><issue>1</issue><spage>159</spage><epage>164</epage><pages>159-164</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>The clinical use of metallic expandable intravascular stents has resulted in improved therapeutic outcomes for coronary artery disease. However, arterial reobstruction after stenting, in-stent restenosis, remains an important problem. Gene therapy to treat in-stent restenosis by using gene vector delivery from the metallic stent surfaces has never been demonstrated. The present studies investigated the hypothesis that metal-bisphosphonate binding can enable site-specific gene vector delivery from metal surfaces. Polyallylamine bisphosphonate (PAA-BP) was synthesized by using Michael addition methodology. Exposure to aqueous solutions of PAA-BP resulted in the formation of a monomolecular bisphosphonate layer on metal alloy surfaces (steel, nitinol, and cobaltchromium), as demonstrated by x-ray photoelectron spectroscopy. Surface-bound PAA-BP enabled adenoviral (Ad) tethering due to covalent thiol-binding of either anti-Ad antibody or a recombinant Ad-receptor protein, D1. In arterial smooth muscle cell cultures, alloy samples configured with surface-tethered Ad were demonstrated to achieve site-specific transduction with a reporter gene, (GFP). Rat carotid stent angioplasties using metal stents exposed to aqueous PAA-BP and derivatized with anti-knob antibody or D1 resulted in extensive localized Ad-GFP expression in the arterial wall. In a separate study with a model therapeutic vector, Adinducible nitric oxide synthase (iNOS) attached to the bisphosphonate-treated metal stent surface via D1, significant inhibition of restenosis was demonstrated (neointimal/media ratio 1.68 ± 0.27 and 3.4 ± 0.35; Ad-iNOS vs. control, P &lt; 0.01). It is concluded that effective gene vector delivery from metallic stent surfaces can be achieved by using this approach.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>16371477</pmid><doi>10.1073/pnas.0502945102</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0027-8424
ispartof Proceedings of the National Academy of Sciences - PNAS, 2006-01, Vol.103 (1), p.159-164
issn 0027-8424
1091-6490
language eng
recordid cdi_proquest_miscellaneous_17463342
source MEDLINE; JSTOR Archive Collection A-Z Listing; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry
subjects Adenoviridae - metabolism
Alloys
Angioplasty
Angioplasty - methods
Animals
Antibodies
Arteries
Biological Sciences
Blood vessels
Cardiovascular disease
Cells, Cultured
Coronary Artery Disease - complications
Coronary Artery Disease - surgery
Diphosphonates
Diphosphonates - metabolism
Gene therapy
Genes, Reporter - genetics
Genetic Therapy - methods
Genetic vectors
Genetic Vectors - metabolism
Genetic Vectors - therapeutic use
Graft Occlusion, Vascular - etiology
Graft Occlusion, Vascular - therapy
Green Fluorescent Proteins - metabolism
Male
Medical treatment
Metal surfaces
Metals
Nitric Oxide Synthase Type II - metabolism
Polyamines - metabolism
Rats
Rats, Sprague-Dawley
Spectrum Analysis
Steels
Stents
Transduction, Genetic - methods
title Bisphosphonate-Mediated Gene Vector Delivery from the Metal Surfaces of Stents
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T08%3A37%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Bisphosphonate-Mediated%20Gene%20Vector%20Delivery%20from%20the%20Metal%20Surfaces%20of%20Stents&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Fishbein,%20Ilia&rft.date=2006-01-03&rft.volume=103&rft.issue=1&rft.spage=159&rft.epage=164&rft.pages=159-164&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.0502945102&rft_dat=%3Cjstor_proqu%3E30048268%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=201393919&rft_id=info:pmid/16371477&rft_jstor_id=30048268&rfr_iscdi=true