Glutathione levels discriminate between oxidative stress and transforming growth factor-beta signaling in activated rat hepatic stellate cells
Reactive oxygen species are implicated in the pathogenesis of several diseases, including Alzheimer's disease, multiple sclerosis, human immunodeficiency virus, and liver fibrosis. With respect to liver fibrosis, we have investigated differences in antioxidant enzymes expression in stellate cel...
Gespeichert in:
Veröffentlicht in: | The Journal of biological chemistry 1999-11, Vol.274 (48), p.33881-33887 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 33887 |
---|---|
container_issue | 48 |
container_start_page | 33881 |
container_title | The Journal of biological chemistry |
container_volume | 274 |
creator | De Bleser, P J Xu, G Rombouts, K Rogiers, V Geerts, A |
description | Reactive oxygen species are implicated in the pathogenesis of several diseases, including Alzheimer's disease, multiple sclerosis, human immunodeficiency virus, and liver fibrosis. With respect to liver fibrosis, we have investigated differences in antioxidant enzymes expression in stellate cells (SCs) and parenchymal cells from normal and CCl(4)-treated rat livers. We observed an increase in the expression of catalase in activated SCs. Treatment with transforming growth factor-beta (TGF-beta) increased the production of H(2)O(2). Treatment with catalase decreased TGF-beta expression. Addition of H(2)O(2) resulted in increased TGF-beta production. 3-Amino-1,2,4-triazole abolished the capacity of SCs to remove H(2)O(2). A paradoxical increase in capacity was observed when the cells were pretreated with diethyl maleate. Treatment with 3-amino-1, 2,4-triazole increased TGF-beta production. A paradoxical decrease of TGF-beta production was observed with diethyl maleate. Treatment of the cells with N-acetylcysteine resulted in increased TGF-beta production. TGF-beta decreased the capacity of the SCs to remove H(2)O(2.) An increase in the capacity to remove H(2)O(2) was observed when TGF-beta was removed by neutralizing antibodies. In conclusion, our results suggest: 1) a link between cellular GSH levels and TGF-beta production and 2) that cellular GSH levels discriminate whether H(2)O(2) is the result of oxidative stress or acts as second messenger in the TGF-beta signal transduction pathway. |
doi_str_mv | 10.1074/jbc.274.48.33881 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_17462339</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>17462339</sourcerecordid><originalsourceid>FETCH-LOGICAL-c368t-5c6b7dbd6253a877662255e8c167d2cd3268e44a31d84b9fe34f21f50b6d4f8c3</originalsourceid><addsrcrecordid>eNpNkD9PAyEYhxk0tlZ3J8PkdpV_x3GjabSaNHHRmXDwXktzvatAW_0SfmapdZDlTeD3e4AHoRtKppRU4n7d2CmrxFSoKedK0TM0JoTRomalGqHLGNckL1HTCzSipJQVF_UYfc-7XTJp5YcecAd76CJ2PtrgN743CXAD6QDQ4-HTO5P8HnBMAWLEpnc4BdPHdgg5u8TLMBzSCrfGpiEUuWdw9MvedMdD3-O87_cZ6XAwCa9gm3E206DrjhfZPOMVOm9NF-H6b07Q-9Pj2-y5WLzOX2YPi8JyqVJRWtlUrnGSldyoqpKSsbIEZamsHLOOM6lACMOpU6KpW-CiZbQtSSOdaJXlE3R34m7D8LGDmPQmf_r4kh6GXdS0EpJxXucgOQVtGGIM0OptVmPCl6ZEH73r7F1n71oo_es9V27_2LtmA-5f4SSd_wAvu4Tv</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>17462339</pqid></control><display><type>article</type><title>Glutathione levels discriminate between oxidative stress and transforming growth factor-beta signaling in activated rat hepatic stellate cells</title><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Alma/SFX Local Collection</source><creator>De Bleser, P J ; Xu, G ; Rombouts, K ; Rogiers, V ; Geerts, A</creator><creatorcontrib>De Bleser, P J ; Xu, G ; Rombouts, K ; Rogiers, V ; Geerts, A</creatorcontrib><description>Reactive oxygen species are implicated in the pathogenesis of several diseases, including Alzheimer's disease, multiple sclerosis, human immunodeficiency virus, and liver fibrosis. With respect to liver fibrosis, we have investigated differences in antioxidant enzymes expression in stellate cells (SCs) and parenchymal cells from normal and CCl(4)-treated rat livers. We observed an increase in the expression of catalase in activated SCs. Treatment with transforming growth factor-beta (TGF-beta) increased the production of H(2)O(2). Treatment with catalase decreased TGF-beta expression. Addition of H(2)O(2) resulted in increased TGF-beta production. 3-Amino-1,2,4-triazole abolished the capacity of SCs to remove H(2)O(2). A paradoxical increase in capacity was observed when the cells were pretreated with diethyl maleate. Treatment with 3-amino-1, 2,4-triazole increased TGF-beta production. A paradoxical decrease of TGF-beta production was observed with diethyl maleate. Treatment of the cells with N-acetylcysteine resulted in increased TGF-beta production. TGF-beta decreased the capacity of the SCs to remove H(2)O(2.) An increase in the capacity to remove H(2)O(2) was observed when TGF-beta was removed by neutralizing antibodies. In conclusion, our results suggest: 1) a link between cellular GSH levels and TGF-beta production and 2) that cellular GSH levels discriminate whether H(2)O(2) is the result of oxidative stress or acts as second messenger in the TGF-beta signal transduction pathway.</description><identifier>ISSN: 0021-9258</identifier><identifier>DOI: 10.1074/jbc.274.48.33881</identifier><identifier>PMID: 10567349</identifier><language>eng</language><publisher>United States</publisher><subject>3-Amino-1,2,4-triazole ; Acetylcysteine - pharmacology ; Animals ; Blotting, Northern ; Carbon Tetrachloride - toxicity ; Catalase - genetics ; Catalase - pharmacology ; diethyl maleate ; Dose-Response Relationship, Drug ; Glutathione - metabolism ; Glutathione Peroxidase - genetics ; Hydrogen Peroxide - metabolism ; Hydrogen Peroxide - pharmacology ; Liver - cytology ; Liver - drug effects ; Liver - metabolism ; Male ; Oxidative Stress ; Rats ; Rats, Wistar ; RNA, Messenger - drug effects ; RNA, Messenger - genetics ; RNA, Messenger - metabolism ; Signal Transduction ; Superoxide Dismutase - genetics ; Transforming Growth Factor beta - metabolism ; Transforming Growth Factor beta - pharmacology ; Transforming Growth Factor beta - physiology ; Vitamin K - pharmacology</subject><ispartof>The Journal of biological chemistry, 1999-11, Vol.274 (48), p.33881-33887</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c368t-5c6b7dbd6253a877662255e8c167d2cd3268e44a31d84b9fe34f21f50b6d4f8c3</citedby><cites>FETCH-LOGICAL-c368t-5c6b7dbd6253a877662255e8c167d2cd3268e44a31d84b9fe34f21f50b6d4f8c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/10567349$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>De Bleser, P J</creatorcontrib><creatorcontrib>Xu, G</creatorcontrib><creatorcontrib>Rombouts, K</creatorcontrib><creatorcontrib>Rogiers, V</creatorcontrib><creatorcontrib>Geerts, A</creatorcontrib><title>Glutathione levels discriminate between oxidative stress and transforming growth factor-beta signaling in activated rat hepatic stellate cells</title><title>The Journal of biological chemistry</title><addtitle>J Biol Chem</addtitle><description>Reactive oxygen species are implicated in the pathogenesis of several diseases, including Alzheimer's disease, multiple sclerosis, human immunodeficiency virus, and liver fibrosis. With respect to liver fibrosis, we have investigated differences in antioxidant enzymes expression in stellate cells (SCs) and parenchymal cells from normal and CCl(4)-treated rat livers. We observed an increase in the expression of catalase in activated SCs. Treatment with transforming growth factor-beta (TGF-beta) increased the production of H(2)O(2). Treatment with catalase decreased TGF-beta expression. Addition of H(2)O(2) resulted in increased TGF-beta production. 3-Amino-1,2,4-triazole abolished the capacity of SCs to remove H(2)O(2). A paradoxical increase in capacity was observed when the cells were pretreated with diethyl maleate. Treatment with 3-amino-1, 2,4-triazole increased TGF-beta production. A paradoxical decrease of TGF-beta production was observed with diethyl maleate. Treatment of the cells with N-acetylcysteine resulted in increased TGF-beta production. TGF-beta decreased the capacity of the SCs to remove H(2)O(2.) An increase in the capacity to remove H(2)O(2) was observed when TGF-beta was removed by neutralizing antibodies. In conclusion, our results suggest: 1) a link between cellular GSH levels and TGF-beta production and 2) that cellular GSH levels discriminate whether H(2)O(2) is the result of oxidative stress or acts as second messenger in the TGF-beta signal transduction pathway.</description><subject>3-Amino-1,2,4-triazole</subject><subject>Acetylcysteine - pharmacology</subject><subject>Animals</subject><subject>Blotting, Northern</subject><subject>Carbon Tetrachloride - toxicity</subject><subject>Catalase - genetics</subject><subject>Catalase - pharmacology</subject><subject>diethyl maleate</subject><subject>Dose-Response Relationship, Drug</subject><subject>Glutathione - metabolism</subject><subject>Glutathione Peroxidase - genetics</subject><subject>Hydrogen Peroxide - metabolism</subject><subject>Hydrogen Peroxide - pharmacology</subject><subject>Liver - cytology</subject><subject>Liver - drug effects</subject><subject>Liver - metabolism</subject><subject>Male</subject><subject>Oxidative Stress</subject><subject>Rats</subject><subject>Rats, Wistar</subject><subject>RNA, Messenger - drug effects</subject><subject>RNA, Messenger - genetics</subject><subject>RNA, Messenger - metabolism</subject><subject>Signal Transduction</subject><subject>Superoxide Dismutase - genetics</subject><subject>Transforming Growth Factor beta - metabolism</subject><subject>Transforming Growth Factor beta - pharmacology</subject><subject>Transforming Growth Factor beta - physiology</subject><subject>Vitamin K - pharmacology</subject><issn>0021-9258</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1999</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpNkD9PAyEYhxk0tlZ3J8PkdpV_x3GjabSaNHHRmXDwXktzvatAW_0SfmapdZDlTeD3e4AHoRtKppRU4n7d2CmrxFSoKedK0TM0JoTRomalGqHLGNckL1HTCzSipJQVF_UYfc-7XTJp5YcecAd76CJ2PtrgN743CXAD6QDQ4-HTO5P8HnBMAWLEpnc4BdPHdgg5u8TLMBzSCrfGpiEUuWdw9MvedMdD3-O87_cZ6XAwCa9gm3E206DrjhfZPOMVOm9NF-H6b07Q-9Pj2-y5WLzOX2YPi8JyqVJRWtlUrnGSldyoqpKSsbIEZamsHLOOM6lACMOpU6KpW-CiZbQtSSOdaJXlE3R34m7D8LGDmPQmf_r4kh6GXdS0EpJxXucgOQVtGGIM0OptVmPCl6ZEH73r7F1n71oo_es9V27_2LtmA-5f4SSd_wAvu4Tv</recordid><startdate>19991126</startdate><enddate>19991126</enddate><creator>De Bleser, P J</creator><creator>Xu, G</creator><creator>Rombouts, K</creator><creator>Rogiers, V</creator><creator>Geerts, A</creator><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>RC3</scope></search><sort><creationdate>19991126</creationdate><title>Glutathione levels discriminate between oxidative stress and transforming growth factor-beta signaling in activated rat hepatic stellate cells</title><author>De Bleser, P J ; Xu, G ; Rombouts, K ; Rogiers, V ; Geerts, A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c368t-5c6b7dbd6253a877662255e8c167d2cd3268e44a31d84b9fe34f21f50b6d4f8c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1999</creationdate><topic>3-Amino-1,2,4-triazole</topic><topic>Acetylcysteine - pharmacology</topic><topic>Animals</topic><topic>Blotting, Northern</topic><topic>Carbon Tetrachloride - toxicity</topic><topic>Catalase - genetics</topic><topic>Catalase - pharmacology</topic><topic>diethyl maleate</topic><topic>Dose-Response Relationship, Drug</topic><topic>Glutathione - metabolism</topic><topic>Glutathione Peroxidase - genetics</topic><topic>Hydrogen Peroxide - metabolism</topic><topic>Hydrogen Peroxide - pharmacology</topic><topic>Liver - cytology</topic><topic>Liver - drug effects</topic><topic>Liver - metabolism</topic><topic>Male</topic><topic>Oxidative Stress</topic><topic>Rats</topic><topic>Rats, Wistar</topic><topic>RNA, Messenger - drug effects</topic><topic>RNA, Messenger - genetics</topic><topic>RNA, Messenger - metabolism</topic><topic>Signal Transduction</topic><topic>Superoxide Dismutase - genetics</topic><topic>Transforming Growth Factor beta - metabolism</topic><topic>Transforming Growth Factor beta - pharmacology</topic><topic>Transforming Growth Factor beta - physiology</topic><topic>Vitamin K - pharmacology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>De Bleser, P J</creatorcontrib><creatorcontrib>Xu, G</creatorcontrib><creatorcontrib>Rombouts, K</creatorcontrib><creatorcontrib>Rogiers, V</creatorcontrib><creatorcontrib>Geerts, A</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><jtitle>The Journal of biological chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>De Bleser, P J</au><au>Xu, G</au><au>Rombouts, K</au><au>Rogiers, V</au><au>Geerts, A</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Glutathione levels discriminate between oxidative stress and transforming growth factor-beta signaling in activated rat hepatic stellate cells</atitle><jtitle>The Journal of biological chemistry</jtitle><addtitle>J Biol Chem</addtitle><date>1999-11-26</date><risdate>1999</risdate><volume>274</volume><issue>48</issue><spage>33881</spage><epage>33887</epage><pages>33881-33887</pages><issn>0021-9258</issn><abstract>Reactive oxygen species are implicated in the pathogenesis of several diseases, including Alzheimer's disease, multiple sclerosis, human immunodeficiency virus, and liver fibrosis. With respect to liver fibrosis, we have investigated differences in antioxidant enzymes expression in stellate cells (SCs) and parenchymal cells from normal and CCl(4)-treated rat livers. We observed an increase in the expression of catalase in activated SCs. Treatment with transforming growth factor-beta (TGF-beta) increased the production of H(2)O(2). Treatment with catalase decreased TGF-beta expression. Addition of H(2)O(2) resulted in increased TGF-beta production. 3-Amino-1,2,4-triazole abolished the capacity of SCs to remove H(2)O(2). A paradoxical increase in capacity was observed when the cells were pretreated with diethyl maleate. Treatment with 3-amino-1, 2,4-triazole increased TGF-beta production. A paradoxical decrease of TGF-beta production was observed with diethyl maleate. Treatment of the cells with N-acetylcysteine resulted in increased TGF-beta production. TGF-beta decreased the capacity of the SCs to remove H(2)O(2.) An increase in the capacity to remove H(2)O(2) was observed when TGF-beta was removed by neutralizing antibodies. In conclusion, our results suggest: 1) a link between cellular GSH levels and TGF-beta production and 2) that cellular GSH levels discriminate whether H(2)O(2) is the result of oxidative stress or acts as second messenger in the TGF-beta signal transduction pathway.</abstract><cop>United States</cop><pmid>10567349</pmid><doi>10.1074/jbc.274.48.33881</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-9258 |
ispartof | The Journal of biological chemistry, 1999-11, Vol.274 (48), p.33881-33887 |
issn | 0021-9258 |
language | eng |
recordid | cdi_proquest_miscellaneous_17462339 |
source | MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Alma/SFX Local Collection |
subjects | 3-Amino-1,2,4-triazole Acetylcysteine - pharmacology Animals Blotting, Northern Carbon Tetrachloride - toxicity Catalase - genetics Catalase - pharmacology diethyl maleate Dose-Response Relationship, Drug Glutathione - metabolism Glutathione Peroxidase - genetics Hydrogen Peroxide - metabolism Hydrogen Peroxide - pharmacology Liver - cytology Liver - drug effects Liver - metabolism Male Oxidative Stress Rats Rats, Wistar RNA, Messenger - drug effects RNA, Messenger - genetics RNA, Messenger - metabolism Signal Transduction Superoxide Dismutase - genetics Transforming Growth Factor beta - metabolism Transforming Growth Factor beta - pharmacology Transforming Growth Factor beta - physiology Vitamin K - pharmacology |
title | Glutathione levels discriminate between oxidative stress and transforming growth factor-beta signaling in activated rat hepatic stellate cells |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T16%3A42%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Glutathione%20levels%20discriminate%20between%20oxidative%20stress%20and%20transforming%20growth%20factor-beta%20signaling%20in%20activated%20rat%20hepatic%20stellate%20cells&rft.jtitle=The%20Journal%20of%20biological%20chemistry&rft.au=De%20Bleser,%20P%20J&rft.date=1999-11-26&rft.volume=274&rft.issue=48&rft.spage=33881&rft.epage=33887&rft.pages=33881-33887&rft.issn=0021-9258&rft_id=info:doi/10.1074/jbc.274.48.33881&rft_dat=%3Cproquest_cross%3E17462339%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=17462339&rft_id=info:pmid/10567349&rfr_iscdi=true |