Variable Tolerance of Wetland Tree Species to Combined Salinity and Waterlogging Is Related to Regulation of Ion Uptake and Production of Organic Solutes

$\bullet$ Melaleuca cuticularis and Casuarina obesa occur in wetlands, whereas Banksia attenuata occurs in adjacent well-drained sandy soils. Salt and waterlogging tolerances in these tree species were studied, as the levels of these stresses have increased in south-western Australia. $\bullet$ Seed...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The New phytologist 2006-01, Vol.169 (1), p.123-133
Hauptverfasser: Carter, Jennifer L., Colmer, Timothy D., Veneklaas, Erik J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 133
container_issue 1
container_start_page 123
container_title The New phytologist
container_volume 169
creator Carter, Jennifer L.
Colmer, Timothy D.
Veneklaas, Erik J.
description $\bullet$ Melaleuca cuticularis and Casuarina obesa occur in wetlands, whereas Banksia attenuata occurs in adjacent well-drained sandy soils. Salt and waterlogging tolerances in these tree species were studied, as the levels of these stresses have increased in south-western Australia. $\bullet$ Seedlings were exposed to 0.01, 200 or 400 mM NaCl, with or without waterlogging, in a sand culture with nutrient solution for 22 d in a glasshouse. $\bullet$ Melaleuca cuticularis and C. obesa survived all treatments, and generally maintained high rates of net photosynthesis. Banksia attenuata tolerated neither waterlogging nor salinity. Salt tolerance of M. cuticularis and C. obesa was associated with the regulation of foliar sodium (Na+), chloride (Cl-) and potassium (K+) concentrations. Under saline-waterlogged conditions, this regulation was maintained in M. cuticularis, but was reduced in C. obesa. Foliage of these two species also contained appreciable levels of compatible organic solutes: methyl proline in M. cuticularis and proline in C. obesa; in both cases the concentrations increased at higher salinity. $\bullet$ Melaleuca cuticularis formed a higher proportion of aerenchyma in adventitious roots than C. obesa, so enhanced internal root aeration in M. cuticularis might contribute to its higher tolerance of combined salinity and waterlogging.
doi_str_mv 10.1111/j.1469-8137.2005.01552.x
format Article
fullrecord <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_17450443</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>3694365</jstor_id><sourcerecordid>3694365</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4492-41e0ab3bfbe1b708f715dd1b72d7966731eb15267f1077bf6e1a4a197491f8f83</originalsourceid><addsrcrecordid>eNqNkcFu1DAQhi0EotvCGyDkC9w22LFjJwcOaAXtShWtulvKzXKSceTFG2_tRHQfhbfF6S7tFV9m7Pn-sT0_QpiSjKb1aZNRLqp5SZnMckKKjNCiyLOHF2j2VHiJZoTk5Vxw8fMEnca4IYRUhchfoxMqWEV4zmfozw8drK4d4LV3EHTfAPYG38HgdN_idQDAqx00FiIePF74bW17aPFKO9vbYY8n6k4PEJzvOtt3eBnxDbh00k6CG-jGtLG-n9ouU7jdDfoXPOqug2_H5l_xKnS6tw1eeTcOEN-gV0a7CG-P8Qzdfvu6XlzML6_Ol4svl_OG8yqfcwpE16w2NdBaktJIWrRtSvNWVkJIRqGmRS6koUTK2gigmmtaSV5RU5qSnaGPh7674O9HiIPa2tiAS_8HP0ZFJS8I5yyB5QFsgo8xgFG7YLc67BUlarJFbdQ0fTVNX022qEdb1EOSvj_eMdZbaJ-FRx8S8OEI6NhoZyYjbHzmZEEkq0TiPh-439bB_r8foL5fX0xZ0r876Ddx8OFJz0TFmSjYX8Zxs0o</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>17450443</pqid></control><display><type>article</type><title>Variable Tolerance of Wetland Tree Species to Combined Salinity and Waterlogging Is Related to Regulation of Ion Uptake and Production of Organic Solutes</title><source>MEDLINE</source><source>Wiley Online Library Free Content</source><source>Access via Wiley Online Library</source><source>Jstor Complete Legacy</source><source>IngentaConnect Free/Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Carter, Jennifer L. ; Colmer, Timothy D. ; Veneklaas, Erik J.</creator><creatorcontrib>Carter, Jennifer L. ; Colmer, Timothy D. ; Veneklaas, Erik J.</creatorcontrib><description>$\bullet$ Melaleuca cuticularis and Casuarina obesa occur in wetlands, whereas Banksia attenuata occurs in adjacent well-drained sandy soils. Salt and waterlogging tolerances in these tree species were studied, as the levels of these stresses have increased in south-western Australia. $\bullet$ Seedlings were exposed to 0.01, 200 or 400 mM NaCl, with or without waterlogging, in a sand culture with nutrient solution for 22 d in a glasshouse. $\bullet$ Melaleuca cuticularis and C. obesa survived all treatments, and generally maintained high rates of net photosynthesis. Banksia attenuata tolerated neither waterlogging nor salinity. Salt tolerance of M. cuticularis and C. obesa was associated with the regulation of foliar sodium (Na+), chloride (Cl-) and potassium (K+) concentrations. Under saline-waterlogged conditions, this regulation was maintained in M. cuticularis, but was reduced in C. obesa. Foliage of these two species also contained appreciable levels of compatible organic solutes: methyl proline in M. cuticularis and proline in C. obesa; in both cases the concentrations increased at higher salinity. $\bullet$ Melaleuca cuticularis formed a higher proportion of aerenchyma in adventitious roots than C. obesa, so enhanced internal root aeration in M. cuticularis might contribute to its higher tolerance of combined salinity and waterlogging.</description><identifier>ISSN: 0028-646X</identifier><identifier>EISSN: 1469-8137</identifier><identifier>DOI: 10.1111/j.1469-8137.2005.01552.x</identifier><identifier>PMID: 16390424</identifier><identifier>CODEN: NEPHAV</identifier><language>eng</language><publisher>Oxford, UK: Blackwell Science</publisher><subject>Acclimatization ; Adventitious roots ; aerenchyma ; Animal and plant ecology ; Animal, plant and microbial ecology ; Autoecology ; Banksia ; Biological and medical sciences ; Brackish ; Casuarina ; Chlorine - metabolism ; Cladodes ; folial Na+ and Cl− concentrations ; Fundamental and applied biological sciences. Psychology ; Ion Transport ; leaf sap osmotic potential ; Leaves ; Magnoliopsida - drug effects ; Magnoliopsida - metabolism ; Magnoliopsida - physiology ; Melaleuca ; Melaleuca - drug effects ; Melaleuca - metabolism ; Melaleuca - physiology ; methyl proline ; Nutrient solutions ; Photosynthesis ; Plant Leaves - drug effects ; Plant Leaves - metabolism ; Plant Leaves - physiology ; Plant physiology and development ; Plant Roots - anatomy &amp; histology ; Plant Roots - growth &amp; development ; Plant Roots - physiology ; Plants ; Plants and fungi ; Potassium - metabolism ; proline ; Proline - analogs &amp; derivatives ; Proline - biosynthesis ; Salinity ; Seedlings ; Sodium - metabolism ; Sodium Chloride - metabolism ; Sodium Chloride - pharmacology ; Soil salinity ; Solutes ; Water - pharmacology ; Water and solutes. Absorption, translocation and permeability ; waterlogging ; Western Australia ; woody species</subject><ispartof>The New phytologist, 2006-01, Vol.169 (1), p.123-133</ispartof><rights>Copyright 2006 New Phytologist</rights><rights>2006 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4492-41e0ab3bfbe1b708f715dd1b72d7966731eb15267f1077bf6e1a4a197491f8f83</citedby><cites>FETCH-LOGICAL-c4492-41e0ab3bfbe1b708f715dd1b72d7966731eb15267f1077bf6e1a4a197491f8f83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/3694365$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/3694365$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,780,784,803,1417,1433,4024,27923,27924,27925,45574,45575,46409,46833,58017,58250</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=17507396$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/16390424$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Carter, Jennifer L.</creatorcontrib><creatorcontrib>Colmer, Timothy D.</creatorcontrib><creatorcontrib>Veneklaas, Erik J.</creatorcontrib><title>Variable Tolerance of Wetland Tree Species to Combined Salinity and Waterlogging Is Related to Regulation of Ion Uptake and Production of Organic Solutes</title><title>The New phytologist</title><addtitle>New Phytol</addtitle><description>$\bullet$ Melaleuca cuticularis and Casuarina obesa occur in wetlands, whereas Banksia attenuata occurs in adjacent well-drained sandy soils. Salt and waterlogging tolerances in these tree species were studied, as the levels of these stresses have increased in south-western Australia. $\bullet$ Seedlings were exposed to 0.01, 200 or 400 mM NaCl, with or without waterlogging, in a sand culture with nutrient solution for 22 d in a glasshouse. $\bullet$ Melaleuca cuticularis and C. obesa survived all treatments, and generally maintained high rates of net photosynthesis. Banksia attenuata tolerated neither waterlogging nor salinity. Salt tolerance of M. cuticularis and C. obesa was associated with the regulation of foliar sodium (Na+), chloride (Cl-) and potassium (K+) concentrations. Under saline-waterlogged conditions, this regulation was maintained in M. cuticularis, but was reduced in C. obesa. Foliage of these two species also contained appreciable levels of compatible organic solutes: methyl proline in M. cuticularis and proline in C. obesa; in both cases the concentrations increased at higher salinity. $\bullet$ Melaleuca cuticularis formed a higher proportion of aerenchyma in adventitious roots than C. obesa, so enhanced internal root aeration in M. cuticularis might contribute to its higher tolerance of combined salinity and waterlogging.</description><subject>Acclimatization</subject><subject>Adventitious roots</subject><subject>aerenchyma</subject><subject>Animal and plant ecology</subject><subject>Animal, plant and microbial ecology</subject><subject>Autoecology</subject><subject>Banksia</subject><subject>Biological and medical sciences</subject><subject>Brackish</subject><subject>Casuarina</subject><subject>Chlorine - metabolism</subject><subject>Cladodes</subject><subject>folial Na+ and Cl− concentrations</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Ion Transport</subject><subject>leaf sap osmotic potential</subject><subject>Leaves</subject><subject>Magnoliopsida - drug effects</subject><subject>Magnoliopsida - metabolism</subject><subject>Magnoliopsida - physiology</subject><subject>Melaleuca</subject><subject>Melaleuca - drug effects</subject><subject>Melaleuca - metabolism</subject><subject>Melaleuca - physiology</subject><subject>methyl proline</subject><subject>Nutrient solutions</subject><subject>Photosynthesis</subject><subject>Plant Leaves - drug effects</subject><subject>Plant Leaves - metabolism</subject><subject>Plant Leaves - physiology</subject><subject>Plant physiology and development</subject><subject>Plant Roots - anatomy &amp; histology</subject><subject>Plant Roots - growth &amp; development</subject><subject>Plant Roots - physiology</subject><subject>Plants</subject><subject>Plants and fungi</subject><subject>Potassium - metabolism</subject><subject>proline</subject><subject>Proline - analogs &amp; derivatives</subject><subject>Proline - biosynthesis</subject><subject>Salinity</subject><subject>Seedlings</subject><subject>Sodium - metabolism</subject><subject>Sodium Chloride - metabolism</subject><subject>Sodium Chloride - pharmacology</subject><subject>Soil salinity</subject><subject>Solutes</subject><subject>Water - pharmacology</subject><subject>Water and solutes. Absorption, translocation and permeability</subject><subject>waterlogging</subject><subject>Western Australia</subject><subject>woody species</subject><issn>0028-646X</issn><issn>1469-8137</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkcFu1DAQhi0EotvCGyDkC9w22LFjJwcOaAXtShWtulvKzXKSceTFG2_tRHQfhbfF6S7tFV9m7Pn-sT0_QpiSjKb1aZNRLqp5SZnMckKKjNCiyLOHF2j2VHiJZoTk5Vxw8fMEnca4IYRUhchfoxMqWEV4zmfozw8drK4d4LV3EHTfAPYG38HgdN_idQDAqx00FiIePF74bW17aPFKO9vbYY8n6k4PEJzvOtt3eBnxDbh00k6CG-jGtLG-n9ouU7jdDfoXPOqug2_H5l_xKnS6tw1eeTcOEN-gV0a7CG-P8Qzdfvu6XlzML6_Ol4svl_OG8yqfcwpE16w2NdBaktJIWrRtSvNWVkJIRqGmRS6koUTK2gigmmtaSV5RU5qSnaGPh7674O9HiIPa2tiAS_8HP0ZFJS8I5yyB5QFsgo8xgFG7YLc67BUlarJFbdQ0fTVNX022qEdb1EOSvj_eMdZbaJ-FRx8S8OEI6NhoZyYjbHzmZEEkq0TiPh-439bB_r8foL5fX0xZ0r876Ddx8OFJz0TFmSjYX8Zxs0o</recordid><startdate>20060101</startdate><enddate>20060101</enddate><creator>Carter, Jennifer L.</creator><creator>Colmer, Timothy D.</creator><creator>Veneklaas, Erik J.</creator><general>Blackwell Science</general><general>Blackwell Publishing Ltd</general><general>Blackwell</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SN</scope><scope>C1K</scope><scope>F1W</scope><scope>H95</scope><scope>L.G</scope></search><sort><creationdate>20060101</creationdate><title>Variable Tolerance of Wetland Tree Species to Combined Salinity and Waterlogging Is Related to Regulation of Ion Uptake and Production of Organic Solutes</title><author>Carter, Jennifer L. ; Colmer, Timothy D. ; Veneklaas, Erik J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4492-41e0ab3bfbe1b708f715dd1b72d7966731eb15267f1077bf6e1a4a197491f8f83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Acclimatization</topic><topic>Adventitious roots</topic><topic>aerenchyma</topic><topic>Animal and plant ecology</topic><topic>Animal, plant and microbial ecology</topic><topic>Autoecology</topic><topic>Banksia</topic><topic>Biological and medical sciences</topic><topic>Brackish</topic><topic>Casuarina</topic><topic>Chlorine - metabolism</topic><topic>Cladodes</topic><topic>folial Na+ and Cl− concentrations</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Ion Transport</topic><topic>leaf sap osmotic potential</topic><topic>Leaves</topic><topic>Magnoliopsida - drug effects</topic><topic>Magnoliopsida - metabolism</topic><topic>Magnoliopsida - physiology</topic><topic>Melaleuca</topic><topic>Melaleuca - drug effects</topic><topic>Melaleuca - metabolism</topic><topic>Melaleuca - physiology</topic><topic>methyl proline</topic><topic>Nutrient solutions</topic><topic>Photosynthesis</topic><topic>Plant Leaves - drug effects</topic><topic>Plant Leaves - metabolism</topic><topic>Plant Leaves - physiology</topic><topic>Plant physiology and development</topic><topic>Plant Roots - anatomy &amp; histology</topic><topic>Plant Roots - growth &amp; development</topic><topic>Plant Roots - physiology</topic><topic>Plants</topic><topic>Plants and fungi</topic><topic>Potassium - metabolism</topic><topic>proline</topic><topic>Proline - analogs &amp; derivatives</topic><topic>Proline - biosynthesis</topic><topic>Salinity</topic><topic>Seedlings</topic><topic>Sodium - metabolism</topic><topic>Sodium Chloride - metabolism</topic><topic>Sodium Chloride - pharmacology</topic><topic>Soil salinity</topic><topic>Solutes</topic><topic>Water - pharmacology</topic><topic>Water and solutes. Absorption, translocation and permeability</topic><topic>waterlogging</topic><topic>Western Australia</topic><topic>woody species</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Carter, Jennifer L.</creatorcontrib><creatorcontrib>Colmer, Timothy D.</creatorcontrib><creatorcontrib>Veneklaas, Erik J.</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Ecology Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 1: Biological Sciences &amp; Living Resources</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><jtitle>The New phytologist</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Carter, Jennifer L.</au><au>Colmer, Timothy D.</au><au>Veneklaas, Erik J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Variable Tolerance of Wetland Tree Species to Combined Salinity and Waterlogging Is Related to Regulation of Ion Uptake and Production of Organic Solutes</atitle><jtitle>The New phytologist</jtitle><addtitle>New Phytol</addtitle><date>2006-01-01</date><risdate>2006</risdate><volume>169</volume><issue>1</issue><spage>123</spage><epage>133</epage><pages>123-133</pages><issn>0028-646X</issn><eissn>1469-8137</eissn><coden>NEPHAV</coden><abstract>$\bullet$ Melaleuca cuticularis and Casuarina obesa occur in wetlands, whereas Banksia attenuata occurs in adjacent well-drained sandy soils. Salt and waterlogging tolerances in these tree species were studied, as the levels of these stresses have increased in south-western Australia. $\bullet$ Seedlings were exposed to 0.01, 200 or 400 mM NaCl, with or without waterlogging, in a sand culture with nutrient solution for 22 d in a glasshouse. $\bullet$ Melaleuca cuticularis and C. obesa survived all treatments, and generally maintained high rates of net photosynthesis. Banksia attenuata tolerated neither waterlogging nor salinity. Salt tolerance of M. cuticularis and C. obesa was associated with the regulation of foliar sodium (Na+), chloride (Cl-) and potassium (K+) concentrations. Under saline-waterlogged conditions, this regulation was maintained in M. cuticularis, but was reduced in C. obesa. Foliage of these two species also contained appreciable levels of compatible organic solutes: methyl proline in M. cuticularis and proline in C. obesa; in both cases the concentrations increased at higher salinity. $\bullet$ Melaleuca cuticularis formed a higher proportion of aerenchyma in adventitious roots than C. obesa, so enhanced internal root aeration in M. cuticularis might contribute to its higher tolerance of combined salinity and waterlogging.</abstract><cop>Oxford, UK</cop><pub>Blackwell Science</pub><pmid>16390424</pmid><doi>10.1111/j.1469-8137.2005.01552.x</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0028-646X
ispartof The New phytologist, 2006-01, Vol.169 (1), p.123-133
issn 0028-646X
1469-8137
language eng
recordid cdi_proquest_miscellaneous_17450443
source MEDLINE; Wiley Online Library Free Content; Access via Wiley Online Library; Jstor Complete Legacy; IngentaConnect Free/Open Access Journals; EZB-FREE-00999 freely available EZB journals
subjects Acclimatization
Adventitious roots
aerenchyma
Animal and plant ecology
Animal, plant and microbial ecology
Autoecology
Banksia
Biological and medical sciences
Brackish
Casuarina
Chlorine - metabolism
Cladodes
folial Na+ and Cl− concentrations
Fundamental and applied biological sciences. Psychology
Ion Transport
leaf sap osmotic potential
Leaves
Magnoliopsida - drug effects
Magnoliopsida - metabolism
Magnoliopsida - physiology
Melaleuca
Melaleuca - drug effects
Melaleuca - metabolism
Melaleuca - physiology
methyl proline
Nutrient solutions
Photosynthesis
Plant Leaves - drug effects
Plant Leaves - metabolism
Plant Leaves - physiology
Plant physiology and development
Plant Roots - anatomy & histology
Plant Roots - growth & development
Plant Roots - physiology
Plants
Plants and fungi
Potassium - metabolism
proline
Proline - analogs & derivatives
Proline - biosynthesis
Salinity
Seedlings
Sodium - metabolism
Sodium Chloride - metabolism
Sodium Chloride - pharmacology
Soil salinity
Solutes
Water - pharmacology
Water and solutes. Absorption, translocation and permeability
waterlogging
Western Australia
woody species
title Variable Tolerance of Wetland Tree Species to Combined Salinity and Waterlogging Is Related to Regulation of Ion Uptake and Production of Organic Solutes
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T06%3A44%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Variable%20Tolerance%20of%20Wetland%20Tree%20Species%20to%20Combined%20Salinity%20and%20Waterlogging%20Is%20Related%20to%20Regulation%20of%20Ion%20Uptake%20and%20Production%20of%20Organic%20Solutes&rft.jtitle=The%20New%20phytologist&rft.au=Carter,%20Jennifer%20L.&rft.date=2006-01-01&rft.volume=169&rft.issue=1&rft.spage=123&rft.epage=133&rft.pages=123-133&rft.issn=0028-646X&rft.eissn=1469-8137&rft.coden=NEPHAV&rft_id=info:doi/10.1111/j.1469-8137.2005.01552.x&rft_dat=%3Cjstor_proqu%3E3694365%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=17450443&rft_id=info:pmid/16390424&rft_jstor_id=3694365&rfr_iscdi=true