Variable Tolerance of Wetland Tree Species to Combined Salinity and Waterlogging Is Related to Regulation of Ion Uptake and Production of Organic Solutes
$\bullet$ Melaleuca cuticularis and Casuarina obesa occur in wetlands, whereas Banksia attenuata occurs in adjacent well-drained sandy soils. Salt and waterlogging tolerances in these tree species were studied, as the levels of these stresses have increased in south-western Australia. $\bullet$ Seed...
Gespeichert in:
Veröffentlicht in: | The New phytologist 2006-01, Vol.169 (1), p.123-133 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 133 |
---|---|
container_issue | 1 |
container_start_page | 123 |
container_title | The New phytologist |
container_volume | 169 |
creator | Carter, Jennifer L. Colmer, Timothy D. Veneklaas, Erik J. |
description | $\bullet$ Melaleuca cuticularis and Casuarina obesa occur in wetlands, whereas Banksia attenuata occurs in adjacent well-drained sandy soils. Salt and waterlogging tolerances in these tree species were studied, as the levels of these stresses have increased in south-western Australia. $\bullet$ Seedlings were exposed to 0.01, 200 or 400 mM NaCl, with or without waterlogging, in a sand culture with nutrient solution for 22 d in a glasshouse. $\bullet$ Melaleuca cuticularis and C. obesa survived all treatments, and generally maintained high rates of net photosynthesis. Banksia attenuata tolerated neither waterlogging nor salinity. Salt tolerance of M. cuticularis and C. obesa was associated with the regulation of foliar sodium (Na+), chloride (Cl-) and potassium (K+) concentrations. Under saline-waterlogged conditions, this regulation was maintained in M. cuticularis, but was reduced in C. obesa. Foliage of these two species also contained appreciable levels of compatible organic solutes: methyl proline in M. cuticularis and proline in C. obesa; in both cases the concentrations increased at higher salinity. $\bullet$ Melaleuca cuticularis formed a higher proportion of aerenchyma in adventitious roots than C. obesa, so enhanced internal root aeration in M. cuticularis might contribute to its higher tolerance of combined salinity and waterlogging. |
doi_str_mv | 10.1111/j.1469-8137.2005.01552.x |
format | Article |
fullrecord | <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_17450443</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>3694365</jstor_id><sourcerecordid>3694365</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4492-41e0ab3bfbe1b708f715dd1b72d7966731eb15267f1077bf6e1a4a197491f8f83</originalsourceid><addsrcrecordid>eNqNkcFu1DAQhi0EotvCGyDkC9w22LFjJwcOaAXtShWtulvKzXKSceTFG2_tRHQfhbfF6S7tFV9m7Pn-sT0_QpiSjKb1aZNRLqp5SZnMckKKjNCiyLOHF2j2VHiJZoTk5Vxw8fMEnca4IYRUhchfoxMqWEV4zmfozw8drK4d4LV3EHTfAPYG38HgdN_idQDAqx00FiIePF74bW17aPFKO9vbYY8n6k4PEJzvOtt3eBnxDbh00k6CG-jGtLG-n9ouU7jdDfoXPOqug2_H5l_xKnS6tw1eeTcOEN-gV0a7CG-P8Qzdfvu6XlzML6_Ol4svl_OG8yqfcwpE16w2NdBaktJIWrRtSvNWVkJIRqGmRS6koUTK2gigmmtaSV5RU5qSnaGPh7674O9HiIPa2tiAS_8HP0ZFJS8I5yyB5QFsgo8xgFG7YLc67BUlarJFbdQ0fTVNX022qEdb1EOSvj_eMdZbaJ-FRx8S8OEI6NhoZyYjbHzmZEEkq0TiPh-439bB_r8foL5fX0xZ0r876Ddx8OFJz0TFmSjYX8Zxs0o</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>17450443</pqid></control><display><type>article</type><title>Variable Tolerance of Wetland Tree Species to Combined Salinity and Waterlogging Is Related to Regulation of Ion Uptake and Production of Organic Solutes</title><source>MEDLINE</source><source>Wiley Online Library Free Content</source><source>Access via Wiley Online Library</source><source>Jstor Complete Legacy</source><source>IngentaConnect Free/Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Carter, Jennifer L. ; Colmer, Timothy D. ; Veneklaas, Erik J.</creator><creatorcontrib>Carter, Jennifer L. ; Colmer, Timothy D. ; Veneklaas, Erik J.</creatorcontrib><description>$\bullet$ Melaleuca cuticularis and Casuarina obesa occur in wetlands, whereas Banksia attenuata occurs in adjacent well-drained sandy soils. Salt and waterlogging tolerances in these tree species were studied, as the levels of these stresses have increased in south-western Australia. $\bullet$ Seedlings were exposed to 0.01, 200 or 400 mM NaCl, with or without waterlogging, in a sand culture with nutrient solution for 22 d in a glasshouse. $\bullet$ Melaleuca cuticularis and C. obesa survived all treatments, and generally maintained high rates of net photosynthesis. Banksia attenuata tolerated neither waterlogging nor salinity. Salt tolerance of M. cuticularis and C. obesa was associated with the regulation of foliar sodium (Na+), chloride (Cl-) and potassium (K+) concentrations. Under saline-waterlogged conditions, this regulation was maintained in M. cuticularis, but was reduced in C. obesa. Foliage of these two species also contained appreciable levels of compatible organic solutes: methyl proline in M. cuticularis and proline in C. obesa; in both cases the concentrations increased at higher salinity. $\bullet$ Melaleuca cuticularis formed a higher proportion of aerenchyma in adventitious roots than C. obesa, so enhanced internal root aeration in M. cuticularis might contribute to its higher tolerance of combined salinity and waterlogging.</description><identifier>ISSN: 0028-646X</identifier><identifier>EISSN: 1469-8137</identifier><identifier>DOI: 10.1111/j.1469-8137.2005.01552.x</identifier><identifier>PMID: 16390424</identifier><identifier>CODEN: NEPHAV</identifier><language>eng</language><publisher>Oxford, UK: Blackwell Science</publisher><subject>Acclimatization ; Adventitious roots ; aerenchyma ; Animal and plant ecology ; Animal, plant and microbial ecology ; Autoecology ; Banksia ; Biological and medical sciences ; Brackish ; Casuarina ; Chlorine - metabolism ; Cladodes ; folial Na+ and Cl− concentrations ; Fundamental and applied biological sciences. Psychology ; Ion Transport ; leaf sap osmotic potential ; Leaves ; Magnoliopsida - drug effects ; Magnoliopsida - metabolism ; Magnoliopsida - physiology ; Melaleuca ; Melaleuca - drug effects ; Melaleuca - metabolism ; Melaleuca - physiology ; methyl proline ; Nutrient solutions ; Photosynthesis ; Plant Leaves - drug effects ; Plant Leaves - metabolism ; Plant Leaves - physiology ; Plant physiology and development ; Plant Roots - anatomy & histology ; Plant Roots - growth & development ; Plant Roots - physiology ; Plants ; Plants and fungi ; Potassium - metabolism ; proline ; Proline - analogs & derivatives ; Proline - biosynthesis ; Salinity ; Seedlings ; Sodium - metabolism ; Sodium Chloride - metabolism ; Sodium Chloride - pharmacology ; Soil salinity ; Solutes ; Water - pharmacology ; Water and solutes. Absorption, translocation and permeability ; waterlogging ; Western Australia ; woody species</subject><ispartof>The New phytologist, 2006-01, Vol.169 (1), p.123-133</ispartof><rights>Copyright 2006 New Phytologist</rights><rights>2006 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4492-41e0ab3bfbe1b708f715dd1b72d7966731eb15267f1077bf6e1a4a197491f8f83</citedby><cites>FETCH-LOGICAL-c4492-41e0ab3bfbe1b708f715dd1b72d7966731eb15267f1077bf6e1a4a197491f8f83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/3694365$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/3694365$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,780,784,803,1417,1433,4024,27923,27924,27925,45574,45575,46409,46833,58017,58250</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=17507396$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/16390424$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Carter, Jennifer L.</creatorcontrib><creatorcontrib>Colmer, Timothy D.</creatorcontrib><creatorcontrib>Veneklaas, Erik J.</creatorcontrib><title>Variable Tolerance of Wetland Tree Species to Combined Salinity and Waterlogging Is Related to Regulation of Ion Uptake and Production of Organic Solutes</title><title>The New phytologist</title><addtitle>New Phytol</addtitle><description>$\bullet$ Melaleuca cuticularis and Casuarina obesa occur in wetlands, whereas Banksia attenuata occurs in adjacent well-drained sandy soils. Salt and waterlogging tolerances in these tree species were studied, as the levels of these stresses have increased in south-western Australia. $\bullet$ Seedlings were exposed to 0.01, 200 or 400 mM NaCl, with or without waterlogging, in a sand culture with nutrient solution for 22 d in a glasshouse. $\bullet$ Melaleuca cuticularis and C. obesa survived all treatments, and generally maintained high rates of net photosynthesis. Banksia attenuata tolerated neither waterlogging nor salinity. Salt tolerance of M. cuticularis and C. obesa was associated with the regulation of foliar sodium (Na+), chloride (Cl-) and potassium (K+) concentrations. Under saline-waterlogged conditions, this regulation was maintained in M. cuticularis, but was reduced in C. obesa. Foliage of these two species also contained appreciable levels of compatible organic solutes: methyl proline in M. cuticularis and proline in C. obesa; in both cases the concentrations increased at higher salinity. $\bullet$ Melaleuca cuticularis formed a higher proportion of aerenchyma in adventitious roots than C. obesa, so enhanced internal root aeration in M. cuticularis might contribute to its higher tolerance of combined salinity and waterlogging.</description><subject>Acclimatization</subject><subject>Adventitious roots</subject><subject>aerenchyma</subject><subject>Animal and plant ecology</subject><subject>Animal, plant and microbial ecology</subject><subject>Autoecology</subject><subject>Banksia</subject><subject>Biological and medical sciences</subject><subject>Brackish</subject><subject>Casuarina</subject><subject>Chlorine - metabolism</subject><subject>Cladodes</subject><subject>folial Na+ and Cl− concentrations</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Ion Transport</subject><subject>leaf sap osmotic potential</subject><subject>Leaves</subject><subject>Magnoliopsida - drug effects</subject><subject>Magnoliopsida - metabolism</subject><subject>Magnoliopsida - physiology</subject><subject>Melaleuca</subject><subject>Melaleuca - drug effects</subject><subject>Melaleuca - metabolism</subject><subject>Melaleuca - physiology</subject><subject>methyl proline</subject><subject>Nutrient solutions</subject><subject>Photosynthesis</subject><subject>Plant Leaves - drug effects</subject><subject>Plant Leaves - metabolism</subject><subject>Plant Leaves - physiology</subject><subject>Plant physiology and development</subject><subject>Plant Roots - anatomy & histology</subject><subject>Plant Roots - growth & development</subject><subject>Plant Roots - physiology</subject><subject>Plants</subject><subject>Plants and fungi</subject><subject>Potassium - metabolism</subject><subject>proline</subject><subject>Proline - analogs & derivatives</subject><subject>Proline - biosynthesis</subject><subject>Salinity</subject><subject>Seedlings</subject><subject>Sodium - metabolism</subject><subject>Sodium Chloride - metabolism</subject><subject>Sodium Chloride - pharmacology</subject><subject>Soil salinity</subject><subject>Solutes</subject><subject>Water - pharmacology</subject><subject>Water and solutes. Absorption, translocation and permeability</subject><subject>waterlogging</subject><subject>Western Australia</subject><subject>woody species</subject><issn>0028-646X</issn><issn>1469-8137</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkcFu1DAQhi0EotvCGyDkC9w22LFjJwcOaAXtShWtulvKzXKSceTFG2_tRHQfhbfF6S7tFV9m7Pn-sT0_QpiSjKb1aZNRLqp5SZnMckKKjNCiyLOHF2j2VHiJZoTk5Vxw8fMEnca4IYRUhchfoxMqWEV4zmfozw8drK4d4LV3EHTfAPYG38HgdN_idQDAqx00FiIePF74bW17aPFKO9vbYY8n6k4PEJzvOtt3eBnxDbh00k6CG-jGtLG-n9ouU7jdDfoXPOqug2_H5l_xKnS6tw1eeTcOEN-gV0a7CG-P8Qzdfvu6XlzML6_Ol4svl_OG8yqfcwpE16w2NdBaktJIWrRtSvNWVkJIRqGmRS6koUTK2gigmmtaSV5RU5qSnaGPh7674O9HiIPa2tiAS_8HP0ZFJS8I5yyB5QFsgo8xgFG7YLc67BUlarJFbdQ0fTVNX022qEdb1EOSvj_eMdZbaJ-FRx8S8OEI6NhoZyYjbHzmZEEkq0TiPh-439bB_r8foL5fX0xZ0r876Ddx8OFJz0TFmSjYX8Zxs0o</recordid><startdate>20060101</startdate><enddate>20060101</enddate><creator>Carter, Jennifer L.</creator><creator>Colmer, Timothy D.</creator><creator>Veneklaas, Erik J.</creator><general>Blackwell Science</general><general>Blackwell Publishing Ltd</general><general>Blackwell</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SN</scope><scope>C1K</scope><scope>F1W</scope><scope>H95</scope><scope>L.G</scope></search><sort><creationdate>20060101</creationdate><title>Variable Tolerance of Wetland Tree Species to Combined Salinity and Waterlogging Is Related to Regulation of Ion Uptake and Production of Organic Solutes</title><author>Carter, Jennifer L. ; Colmer, Timothy D. ; Veneklaas, Erik J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4492-41e0ab3bfbe1b708f715dd1b72d7966731eb15267f1077bf6e1a4a197491f8f83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Acclimatization</topic><topic>Adventitious roots</topic><topic>aerenchyma</topic><topic>Animal and plant ecology</topic><topic>Animal, plant and microbial ecology</topic><topic>Autoecology</topic><topic>Banksia</topic><topic>Biological and medical sciences</topic><topic>Brackish</topic><topic>Casuarina</topic><topic>Chlorine - metabolism</topic><topic>Cladodes</topic><topic>folial Na+ and Cl− concentrations</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Ion Transport</topic><topic>leaf sap osmotic potential</topic><topic>Leaves</topic><topic>Magnoliopsida - drug effects</topic><topic>Magnoliopsida - metabolism</topic><topic>Magnoliopsida - physiology</topic><topic>Melaleuca</topic><topic>Melaleuca - drug effects</topic><topic>Melaleuca - metabolism</topic><topic>Melaleuca - physiology</topic><topic>methyl proline</topic><topic>Nutrient solutions</topic><topic>Photosynthesis</topic><topic>Plant Leaves - drug effects</topic><topic>Plant Leaves - metabolism</topic><topic>Plant Leaves - physiology</topic><topic>Plant physiology and development</topic><topic>Plant Roots - anatomy & histology</topic><topic>Plant Roots - growth & development</topic><topic>Plant Roots - physiology</topic><topic>Plants</topic><topic>Plants and fungi</topic><topic>Potassium - metabolism</topic><topic>proline</topic><topic>Proline - analogs & derivatives</topic><topic>Proline - biosynthesis</topic><topic>Salinity</topic><topic>Seedlings</topic><topic>Sodium - metabolism</topic><topic>Sodium Chloride - metabolism</topic><topic>Sodium Chloride - pharmacology</topic><topic>Soil salinity</topic><topic>Solutes</topic><topic>Water - pharmacology</topic><topic>Water and solutes. Absorption, translocation and permeability</topic><topic>waterlogging</topic><topic>Western Australia</topic><topic>woody species</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Carter, Jennifer L.</creatorcontrib><creatorcontrib>Colmer, Timothy D.</creatorcontrib><creatorcontrib>Veneklaas, Erik J.</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Ecology Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><jtitle>The New phytologist</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Carter, Jennifer L.</au><au>Colmer, Timothy D.</au><au>Veneklaas, Erik J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Variable Tolerance of Wetland Tree Species to Combined Salinity and Waterlogging Is Related to Regulation of Ion Uptake and Production of Organic Solutes</atitle><jtitle>The New phytologist</jtitle><addtitle>New Phytol</addtitle><date>2006-01-01</date><risdate>2006</risdate><volume>169</volume><issue>1</issue><spage>123</spage><epage>133</epage><pages>123-133</pages><issn>0028-646X</issn><eissn>1469-8137</eissn><coden>NEPHAV</coden><abstract>$\bullet$ Melaleuca cuticularis and Casuarina obesa occur in wetlands, whereas Banksia attenuata occurs in adjacent well-drained sandy soils. Salt and waterlogging tolerances in these tree species were studied, as the levels of these stresses have increased in south-western Australia. $\bullet$ Seedlings were exposed to 0.01, 200 or 400 mM NaCl, with or without waterlogging, in a sand culture with nutrient solution for 22 d in a glasshouse. $\bullet$ Melaleuca cuticularis and C. obesa survived all treatments, and generally maintained high rates of net photosynthesis. Banksia attenuata tolerated neither waterlogging nor salinity. Salt tolerance of M. cuticularis and C. obesa was associated with the regulation of foliar sodium (Na+), chloride (Cl-) and potassium (K+) concentrations. Under saline-waterlogged conditions, this regulation was maintained in M. cuticularis, but was reduced in C. obesa. Foliage of these two species also contained appreciable levels of compatible organic solutes: methyl proline in M. cuticularis and proline in C. obesa; in both cases the concentrations increased at higher salinity. $\bullet$ Melaleuca cuticularis formed a higher proportion of aerenchyma in adventitious roots than C. obesa, so enhanced internal root aeration in M. cuticularis might contribute to its higher tolerance of combined salinity and waterlogging.</abstract><cop>Oxford, UK</cop><pub>Blackwell Science</pub><pmid>16390424</pmid><doi>10.1111/j.1469-8137.2005.01552.x</doi><tpages>11</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0028-646X |
ispartof | The New phytologist, 2006-01, Vol.169 (1), p.123-133 |
issn | 0028-646X 1469-8137 |
language | eng |
recordid | cdi_proquest_miscellaneous_17450443 |
source | MEDLINE; Wiley Online Library Free Content; Access via Wiley Online Library; Jstor Complete Legacy; IngentaConnect Free/Open Access Journals; EZB-FREE-00999 freely available EZB journals |
subjects | Acclimatization Adventitious roots aerenchyma Animal and plant ecology Animal, plant and microbial ecology Autoecology Banksia Biological and medical sciences Brackish Casuarina Chlorine - metabolism Cladodes folial Na+ and Cl− concentrations Fundamental and applied biological sciences. Psychology Ion Transport leaf sap osmotic potential Leaves Magnoliopsida - drug effects Magnoliopsida - metabolism Magnoliopsida - physiology Melaleuca Melaleuca - drug effects Melaleuca - metabolism Melaleuca - physiology methyl proline Nutrient solutions Photosynthesis Plant Leaves - drug effects Plant Leaves - metabolism Plant Leaves - physiology Plant physiology and development Plant Roots - anatomy & histology Plant Roots - growth & development Plant Roots - physiology Plants Plants and fungi Potassium - metabolism proline Proline - analogs & derivatives Proline - biosynthesis Salinity Seedlings Sodium - metabolism Sodium Chloride - metabolism Sodium Chloride - pharmacology Soil salinity Solutes Water - pharmacology Water and solutes. Absorption, translocation and permeability waterlogging Western Australia woody species |
title | Variable Tolerance of Wetland Tree Species to Combined Salinity and Waterlogging Is Related to Regulation of Ion Uptake and Production of Organic Solutes |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T06%3A44%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Variable%20Tolerance%20of%20Wetland%20Tree%20Species%20to%20Combined%20Salinity%20and%20Waterlogging%20Is%20Related%20to%20Regulation%20of%20Ion%20Uptake%20and%20Production%20of%20Organic%20Solutes&rft.jtitle=The%20New%20phytologist&rft.au=Carter,%20Jennifer%20L.&rft.date=2006-01-01&rft.volume=169&rft.issue=1&rft.spage=123&rft.epage=133&rft.pages=123-133&rft.issn=0028-646X&rft.eissn=1469-8137&rft.coden=NEPHAV&rft_id=info:doi/10.1111/j.1469-8137.2005.01552.x&rft_dat=%3Cjstor_proqu%3E3694365%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=17450443&rft_id=info:pmid/16390424&rft_jstor_id=3694365&rfr_iscdi=true |