Wave-forced barotropic currents
Waves rolling in to shallow seas will start to dissipate as a result of the bottom friction. The wave momentum will decrease from the dissipation process, and there is a transfer of momentum that accelerates an Eulerian bottom current. Water piles up toward the coast, thereby generating a return flo...
Gespeichert in:
Veröffentlicht in: | Journal of physical oceanography 2005-11, Vol.35 (11), p.2237-2249 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2249 |
---|---|
container_issue | 11 |
container_start_page | 2237 |
container_title | Journal of physical oceanography |
container_volume | 35 |
creator | Brostroem, G |
description | Waves rolling in to shallow seas will start to dissipate as a result of the bottom friction. The wave momentum will decrease from the dissipation process, and there is a transfer of momentum that accelerates an Eulerian bottom current. Water piles up toward the coast, thereby generating a return flow. When rotation is included, the return flows accelerate an alongshore current that moves to the left of the direction of the incoming wave field (Northern Hemisphere). With the assumption that the turbulent exchange can be mimicked by a constant exchange coefficient, there is a fairly simple analytical solution that relates the strength of the barotropic current to the incoming wave field. For deep water, that is, H ≫ 2υt/f, where f is the Coriolis force and νt is the turbulent exchange coefficient, the strength of the alongshore barotropic current becomes 3/2 of the Stokes drift near the bottom or 3ωka2/4 sinh(kH), where ω and k are the wave angular frequency and wavenumber, and a is the amplitude of the wave. Notably, the above expression is equal to the strength of the Eulerian streaming generated under a progressive wave by the wave-induced Reynold stresses in the viscous wave bottom boundary layer. |
doi_str_mv | 10.1175/JPO2802.1 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_17449533</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>17449533</sourcerecordid><originalsourceid>FETCH-LOGICAL-c312t-1081bb92fca52ad7e19712ad2826fe1c5548b95896a429e1f202f84e95fc4b3c3</originalsourceid><addsrcrecordid>eNpd0E1LxDAQBuAgCtbVg7_ARVDw0DUzSdrkKIufLKwHxWNIswl06TY1aQX_vZUtCJ5mDs-8DC8h50AXAKW4fXldo6S4gAOSgUCaUy7FIckoRcxZUdJjcpLSllJaAKqMXHyYL5f7EK3bzCsTQx9DV9u5HWJ0bZ9OyZE3TXJn05yR94f7t-VTvlo_Pi_vVrllgH0OVEJVKfTWCDSb0oEqYVxQYuEdWCG4rJSQqjAclQOPFL3kTglvecUsm5HrfW4Xw-fgUq93dbKuaUzrwpA0lJwrwdgIL__BbRhiO_6mEZliXKAY0c0e2RhSis7rLtY7E781UP3bk5560jDaqynQJGsaH01r6_R3UDKhOGfsB6V5ZLw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>223934525</pqid></control><display><type>article</type><title>Wave-forced barotropic currents</title><source>AMS Journals (Meteorology)</source><source>EZB Electronic Journals Library</source><creator>Brostroem, G</creator><creatorcontrib>Brostroem, G</creatorcontrib><description>Waves rolling in to shallow seas will start to dissipate as a result of the bottom friction. The wave momentum will decrease from the dissipation process, and there is a transfer of momentum that accelerates an Eulerian bottom current. Water piles up toward the coast, thereby generating a return flow. When rotation is included, the return flows accelerate an alongshore current that moves to the left of the direction of the incoming wave field (Northern Hemisphere). With the assumption that the turbulent exchange can be mimicked by a constant exchange coefficient, there is a fairly simple analytical solution that relates the strength of the barotropic current to the incoming wave field. For deep water, that is, H ≫ 2υt/f, where f is the Coriolis force and νt is the turbulent exchange coefficient, the strength of the alongshore barotropic current becomes 3/2 of the Stokes drift near the bottom or 3ωka2/4 sinh(kH), where ω and k are the wave angular frequency and wavenumber, and a is the amplitude of the wave. Notably, the above expression is equal to the strength of the Eulerian streaming generated under a progressive wave by the wave-induced Reynold stresses in the viscous wave bottom boundary layer.</description><identifier>ISSN: 0022-3670</identifier><identifier>EISSN: 1520-0485</identifier><identifier>DOI: 10.1175/JPO2802.1</identifier><identifier>CODEN: JPYOBT</identifier><language>eng</language><publisher>Boston, MA: American Meteorological Society</publisher><subject>Bottom currents ; Boundary layers ; Coastal oceanography, estuaries. Regional oceanography ; Coriolis force ; Deep water ; Earth, ocean, space ; Exact sciences and technology ; External geophysics ; Marine ; Ocean currents ; Physics of the oceans ; Return flow ; Tides ; Water flow</subject><ispartof>Journal of physical oceanography, 2005-11, Vol.35 (11), p.2237-2249</ispartof><rights>2006 INIST-CNRS</rights><rights>Copyright American Meteorological Society Nov 2005</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c312t-1081bb92fca52ad7e19712ad2826fe1c5548b95896a429e1f202f84e95fc4b3c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,3667,27903,27904</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=17359443$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Brostroem, G</creatorcontrib><title>Wave-forced barotropic currents</title><title>Journal of physical oceanography</title><description>Waves rolling in to shallow seas will start to dissipate as a result of the bottom friction. The wave momentum will decrease from the dissipation process, and there is a transfer of momentum that accelerates an Eulerian bottom current. Water piles up toward the coast, thereby generating a return flow. When rotation is included, the return flows accelerate an alongshore current that moves to the left of the direction of the incoming wave field (Northern Hemisphere). With the assumption that the turbulent exchange can be mimicked by a constant exchange coefficient, there is a fairly simple analytical solution that relates the strength of the barotropic current to the incoming wave field. For deep water, that is, H ≫ 2υt/f, where f is the Coriolis force and νt is the turbulent exchange coefficient, the strength of the alongshore barotropic current becomes 3/2 of the Stokes drift near the bottom or 3ωka2/4 sinh(kH), where ω and k are the wave angular frequency and wavenumber, and a is the amplitude of the wave. Notably, the above expression is equal to the strength of the Eulerian streaming generated under a progressive wave by the wave-induced Reynold stresses in the viscous wave bottom boundary layer.</description><subject>Bottom currents</subject><subject>Boundary layers</subject><subject>Coastal oceanography, estuaries. Regional oceanography</subject><subject>Coriolis force</subject><subject>Deep water</subject><subject>Earth, ocean, space</subject><subject>Exact sciences and technology</subject><subject>External geophysics</subject><subject>Marine</subject><subject>Ocean currents</subject><subject>Physics of the oceans</subject><subject>Return flow</subject><subject>Tides</subject><subject>Water flow</subject><issn>0022-3670</issn><issn>1520-0485</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNpd0E1LxDAQBuAgCtbVg7_ARVDw0DUzSdrkKIufLKwHxWNIswl06TY1aQX_vZUtCJ5mDs-8DC8h50AXAKW4fXldo6S4gAOSgUCaUy7FIckoRcxZUdJjcpLSllJaAKqMXHyYL5f7EK3bzCsTQx9DV9u5HWJ0bZ9OyZE3TXJn05yR94f7t-VTvlo_Pi_vVrllgH0OVEJVKfTWCDSb0oEqYVxQYuEdWCG4rJSQqjAclQOPFL3kTglvecUsm5HrfW4Xw-fgUq93dbKuaUzrwpA0lJwrwdgIL__BbRhiO_6mEZliXKAY0c0e2RhSis7rLtY7E781UP3bk5560jDaqynQJGsaH01r6_R3UDKhOGfsB6V5ZLw</recordid><startdate>20051101</startdate><enddate>20051101</enddate><creator>Brostroem, G</creator><general>American Meteorological Society</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TG</scope><scope>7TN</scope><scope>7XB</scope><scope>88F</scope><scope>88I</scope><scope>8AF</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KL.</scope><scope>L.G</scope><scope>M1Q</scope><scope>M2O</scope><scope>M2P</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>S0X</scope></search><sort><creationdate>20051101</creationdate><title>Wave-forced barotropic currents</title><author>Brostroem, G</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c312t-1081bb92fca52ad7e19712ad2826fe1c5548b95896a429e1f202f84e95fc4b3c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Bottom currents</topic><topic>Boundary layers</topic><topic>Coastal oceanography, estuaries. Regional oceanography</topic><topic>Coriolis force</topic><topic>Deep water</topic><topic>Earth, ocean, space</topic><topic>Exact sciences and technology</topic><topic>External geophysics</topic><topic>Marine</topic><topic>Ocean currents</topic><topic>Physics of the oceans</topic><topic>Return flow</topic><topic>Tides</topic><topic>Water flow</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Brostroem, G</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Oceanic Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Military Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Database (1962 - current)</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>eLibrary</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Military Database</collection><collection>ProQuest research library</collection><collection>ProQuest Science Journals</collection><collection>Research Library (Corporate)</collection><collection>ProQuest advanced technologies & aerospace journals</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>SIRS Editorial</collection><jtitle>Journal of physical oceanography</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Brostroem, G</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Wave-forced barotropic currents</atitle><jtitle>Journal of physical oceanography</jtitle><date>2005-11-01</date><risdate>2005</risdate><volume>35</volume><issue>11</issue><spage>2237</spage><epage>2249</epage><pages>2237-2249</pages><issn>0022-3670</issn><eissn>1520-0485</eissn><coden>JPYOBT</coden><abstract>Waves rolling in to shallow seas will start to dissipate as a result of the bottom friction. The wave momentum will decrease from the dissipation process, and there is a transfer of momentum that accelerates an Eulerian bottom current. Water piles up toward the coast, thereby generating a return flow. When rotation is included, the return flows accelerate an alongshore current that moves to the left of the direction of the incoming wave field (Northern Hemisphere). With the assumption that the turbulent exchange can be mimicked by a constant exchange coefficient, there is a fairly simple analytical solution that relates the strength of the barotropic current to the incoming wave field. For deep water, that is, H ≫ 2υt/f, where f is the Coriolis force and νt is the turbulent exchange coefficient, the strength of the alongshore barotropic current becomes 3/2 of the Stokes drift near the bottom or 3ωka2/4 sinh(kH), where ω and k are the wave angular frequency and wavenumber, and a is the amplitude of the wave. Notably, the above expression is equal to the strength of the Eulerian streaming generated under a progressive wave by the wave-induced Reynold stresses in the viscous wave bottom boundary layer.</abstract><cop>Boston, MA</cop><pub>American Meteorological Society</pub><doi>10.1175/JPO2802.1</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-3670 |
ispartof | Journal of physical oceanography, 2005-11, Vol.35 (11), p.2237-2249 |
issn | 0022-3670 1520-0485 |
language | eng |
recordid | cdi_proquest_miscellaneous_17449533 |
source | AMS Journals (Meteorology); EZB Electronic Journals Library |
subjects | Bottom currents Boundary layers Coastal oceanography, estuaries. Regional oceanography Coriolis force Deep water Earth, ocean, space Exact sciences and technology External geophysics Marine Ocean currents Physics of the oceans Return flow Tides Water flow |
title | Wave-forced barotropic currents |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T20%3A46%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Wave-forced%20barotropic%20currents&rft.jtitle=Journal%20of%20physical%20oceanography&rft.au=Brostroem,%20G&rft.date=2005-11-01&rft.volume=35&rft.issue=11&rft.spage=2237&rft.epage=2249&rft.pages=2237-2249&rft.issn=0022-3670&rft.eissn=1520-0485&rft.coden=JPYOBT&rft_id=info:doi/10.1175/JPO2802.1&rft_dat=%3Cproquest_cross%3E17449533%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=223934525&rft_id=info:pmid/&rfr_iscdi=true |