Comparison and Analysis of a Robotic Tendon and Jackspring™ Actuator for Wearable Robotic Systems

Spring-based actuators are important in the design of wearable robotic systems. These actuators can store and release energy, and reduce the peak power requirements. Reducing these requirements allows the system to function with smaller and lighter-weight motors. Three actuators are compared: a lead...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of medical devices 2013-12, Vol.7 (4)
Hauptverfasser: Sugar, Thomas G, Hollander, Kevin W, Boehler, Alexander, Ward, Jeffrey
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 4
container_start_page
container_title Journal of medical devices
container_volume 7
creator Sugar, Thomas G
Hollander, Kevin W
Boehler, Alexander
Ward, Jeffrey
description Spring-based actuators are important in the design of wearable robotic systems. These actuators can store and release energy, and reduce the peak power requirements. Reducing these requirements allows the system to function with smaller and lighter-weight motors. Three actuators are compared: a lead screw actuator, a robotic tendon actuator, and a JackSpring(TM) actuator. The robotic tendon actuator adds a spring in series to the traditional actuator. The JackSpring actuator is a lead screw with a finite stiffness. A formal set of equations for the three actuators is added to Table 1 which summarizes the torque, angular speed, and power for each one. The traditional lead screw actuator cannot store and release energy and the power into the actuator must equal the power out of the actuator. The robotic tendon actuator stores and releases energy, and if a tuned spring is chosen, the power requirements can be greatly reduced. For example, if the desired external motion matches the natural frequency of the system, the motor does not need to rotate. The JackSpring actuator is a unique actuator because the stiffness and motion are coupled. It is shown that if the spring is tuned properly, the power requirements can be greatly reduced, as well.
doi_str_mv 10.1115/1.4025182
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1744731353</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1744731353</sourcerecordid><originalsourceid>FETCH-LOGICAL-a315t-c32d54dc8fdacf8010a04d97001cd378d45fa77d31cf75bd32dc3211145af18a3</originalsourceid><addsrcrecordid>eNqFkD1PwzAQhiMEEqUwMLN4hKHFF9txOlYVn6qEBEWwWVd_oJQkLnYydOeX8NP4JRi1YmU43Q3Pe9L7ZNkp0DEAiEsYc5oLKPO9bAATlo8KmLzu_90lHGZHMa4oFYzlxSDTM9-sMVTRtwRbQ6Yt1ptYReIdQfLol76rNFnY1uyAe9TvcR2q9u3784tMdddj5wNxaV4sBlzW9i_2tImdbeJxduCwjvZkt4fZ8_XVYnY7mj_c3M2m8xEyEN1Is9wIbnTpDGpXUqBIuZlISkEbJkvDhUMpDQPtpFiahKdIas0FOiiRDbPz7d918B-9jZ1qqqhtXWNrfR8VSM4lA5aq_49CLgpOizyhF1tUBx9jsE6l9g2GjQKqfp0rUDvniT3bshgbq1a-D0lnVEwWhZDsB6C3fSc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1712564062</pqid></control><display><type>article</type><title>Comparison and Analysis of a Robotic Tendon and Jackspring™ Actuator for Wearable Robotic Systems</title><source>ASME Transactions Journals (Current)</source><source>Alma/SFX Local Collection</source><creator>Sugar, Thomas G ; Hollander, Kevin W ; Boehler, Alexander ; Ward, Jeffrey</creator><creatorcontrib>Sugar, Thomas G ; Hollander, Kevin W ; Boehler, Alexander ; Ward, Jeffrey</creatorcontrib><description>Spring-based actuators are important in the design of wearable robotic systems. These actuators can store and release energy, and reduce the peak power requirements. Reducing these requirements allows the system to function with smaller and lighter-weight motors. Three actuators are compared: a lead screw actuator, a robotic tendon actuator, and a JackSpring(TM) actuator. The robotic tendon actuator adds a spring in series to the traditional actuator. The JackSpring actuator is a lead screw with a finite stiffness. A formal set of equations for the three actuators is added to Table 1 which summarizes the torque, angular speed, and power for each one. The traditional lead screw actuator cannot store and release energy and the power into the actuator must equal the power out of the actuator. The robotic tendon actuator stores and releases energy, and if a tuned spring is chosen, the power requirements can be greatly reduced. For example, if the desired external motion matches the natural frequency of the system, the motor does not need to rotate. The JackSpring actuator is a unique actuator because the stiffness and motion are coupled. It is shown that if the spring is tuned properly, the power requirements can be greatly reduced, as well.</description><identifier>ISSN: 1932-6181</identifier><identifier>EISSN: 1932-619X</identifier><identifier>DOI: 10.1115/1.4025182</identifier><language>eng</language><publisher>ASME</publisher><subject>Actuators ; Energy storage ; Mathematical analysis ; Motors ; Robotics ; Screws ; Stiffness ; Tendons</subject><ispartof>Journal of medical devices, 2013-12, Vol.7 (4)</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a315t-c32d54dc8fdacf8010a04d97001cd378d45fa77d31cf75bd32dc3211145af18a3</citedby><cites>FETCH-LOGICAL-a315t-c32d54dc8fdacf8010a04d97001cd378d45fa77d31cf75bd32dc3211145af18a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925,38520</link.rule.ids></links><search><creatorcontrib>Sugar, Thomas G</creatorcontrib><creatorcontrib>Hollander, Kevin W</creatorcontrib><creatorcontrib>Boehler, Alexander</creatorcontrib><creatorcontrib>Ward, Jeffrey</creatorcontrib><title>Comparison and Analysis of a Robotic Tendon and Jackspring™ Actuator for Wearable Robotic Systems</title><title>Journal of medical devices</title><addtitle>J. Med. Devices</addtitle><description>Spring-based actuators are important in the design of wearable robotic systems. These actuators can store and release energy, and reduce the peak power requirements. Reducing these requirements allows the system to function with smaller and lighter-weight motors. Three actuators are compared: a lead screw actuator, a robotic tendon actuator, and a JackSpring(TM) actuator. The robotic tendon actuator adds a spring in series to the traditional actuator. The JackSpring actuator is a lead screw with a finite stiffness. A formal set of equations for the three actuators is added to Table 1 which summarizes the torque, angular speed, and power for each one. The traditional lead screw actuator cannot store and release energy and the power into the actuator must equal the power out of the actuator. The robotic tendon actuator stores and releases energy, and if a tuned spring is chosen, the power requirements can be greatly reduced. For example, if the desired external motion matches the natural frequency of the system, the motor does not need to rotate. The JackSpring actuator is a unique actuator because the stiffness and motion are coupled. It is shown that if the spring is tuned properly, the power requirements can be greatly reduced, as well.</description><subject>Actuators</subject><subject>Energy storage</subject><subject>Mathematical analysis</subject><subject>Motors</subject><subject>Robotics</subject><subject>Screws</subject><subject>Stiffness</subject><subject>Tendons</subject><issn>1932-6181</issn><issn>1932-619X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNqFkD1PwzAQhiMEEqUwMLN4hKHFF9txOlYVn6qEBEWwWVd_oJQkLnYydOeX8NP4JRi1YmU43Q3Pe9L7ZNkp0DEAiEsYc5oLKPO9bAATlo8KmLzu_90lHGZHMa4oFYzlxSDTM9-sMVTRtwRbQ6Yt1ptYReIdQfLol76rNFnY1uyAe9TvcR2q9u3784tMdddj5wNxaV4sBlzW9i_2tImdbeJxduCwjvZkt4fZ8_XVYnY7mj_c3M2m8xEyEN1Is9wIbnTpDGpXUqBIuZlISkEbJkvDhUMpDQPtpFiahKdIas0FOiiRDbPz7d918B-9jZ1qqqhtXWNrfR8VSM4lA5aq_49CLgpOizyhF1tUBx9jsE6l9g2GjQKqfp0rUDvniT3bshgbq1a-D0lnVEwWhZDsB6C3fSc</recordid><startdate>20131201</startdate><enddate>20131201</enddate><creator>Sugar, Thomas G</creator><creator>Hollander, Kevin W</creator><creator>Boehler, Alexander</creator><creator>Ward, Jeffrey</creator><general>ASME</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>7SP</scope><scope>7TB</scope><scope>7U5</scope><scope>L7M</scope></search><sort><creationdate>20131201</creationdate><title>Comparison and Analysis of a Robotic Tendon and Jackspring™ Actuator for Wearable Robotic Systems</title><author>Sugar, Thomas G ; Hollander, Kevin W ; Boehler, Alexander ; Ward, Jeffrey</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a315t-c32d54dc8fdacf8010a04d97001cd378d45fa77d31cf75bd32dc3211145af18a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Actuators</topic><topic>Energy storage</topic><topic>Mathematical analysis</topic><topic>Motors</topic><topic>Robotics</topic><topic>Screws</topic><topic>Stiffness</topic><topic>Tendons</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sugar, Thomas G</creatorcontrib><creatorcontrib>Hollander, Kevin W</creatorcontrib><creatorcontrib>Boehler, Alexander</creatorcontrib><creatorcontrib>Ward, Jeffrey</creatorcontrib><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of medical devices</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sugar, Thomas G</au><au>Hollander, Kevin W</au><au>Boehler, Alexander</au><au>Ward, Jeffrey</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Comparison and Analysis of a Robotic Tendon and Jackspring™ Actuator for Wearable Robotic Systems</atitle><jtitle>Journal of medical devices</jtitle><stitle>J. Med. Devices</stitle><date>2013-12-01</date><risdate>2013</risdate><volume>7</volume><issue>4</issue><issn>1932-6181</issn><eissn>1932-619X</eissn><abstract>Spring-based actuators are important in the design of wearable robotic systems. These actuators can store and release energy, and reduce the peak power requirements. Reducing these requirements allows the system to function with smaller and lighter-weight motors. Three actuators are compared: a lead screw actuator, a robotic tendon actuator, and a JackSpring(TM) actuator. The robotic tendon actuator adds a spring in series to the traditional actuator. The JackSpring actuator is a lead screw with a finite stiffness. A formal set of equations for the three actuators is added to Table 1 which summarizes the torque, angular speed, and power for each one. The traditional lead screw actuator cannot store and release energy and the power into the actuator must equal the power out of the actuator. The robotic tendon actuator stores and releases energy, and if a tuned spring is chosen, the power requirements can be greatly reduced. For example, if the desired external motion matches the natural frequency of the system, the motor does not need to rotate. The JackSpring actuator is a unique actuator because the stiffness and motion are coupled. It is shown that if the spring is tuned properly, the power requirements can be greatly reduced, as well.</abstract><pub>ASME</pub><doi>10.1115/1.4025182</doi></addata></record>
fulltext fulltext
identifier ISSN: 1932-6181
ispartof Journal of medical devices, 2013-12, Vol.7 (4)
issn 1932-6181
1932-619X
language eng
recordid cdi_proquest_miscellaneous_1744731353
source ASME Transactions Journals (Current); Alma/SFX Local Collection
subjects Actuators
Energy storage
Mathematical analysis
Motors
Robotics
Screws
Stiffness
Tendons
title Comparison and Analysis of a Robotic Tendon and Jackspring™ Actuator for Wearable Robotic Systems
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-19T06%3A04%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Comparison%20and%20Analysis%20of%20a%20Robotic%20Tendon%20and%20Jackspring%E2%84%A2%20Actuator%20for%20Wearable%20Robotic%20Systems&rft.jtitle=Journal%20of%20medical%20devices&rft.au=Sugar,%20Thomas%20G&rft.date=2013-12-01&rft.volume=7&rft.issue=4&rft.issn=1932-6181&rft.eissn=1932-619X&rft_id=info:doi/10.1115/1.4025182&rft_dat=%3Cproquest_cross%3E1744731353%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1712564062&rft_id=info:pmid/&rfr_iscdi=true