Understanding photoexcitation dynamics in a three-step photoionization of atomic uranium and measurement of photoexcitation and photoionization cross sections

Photoexcitation dynamics in a three-step photoionization of atomic uranium has been investigated using time-resolved two-color three-photon and delayed three-color three-photon photoionization signals. Investigations are carried out in an atomic beam of uranium coupled to a high-resolution time-of-f...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied physics. B, Lasers and optics Lasers and optics, 2015-09, Vol.120 (4), p.751-758
Hauptverfasser: Mandal, P. K., Sahoo, A. C., Das, R. C., Shah, M. L., Pulhani, A. K., Manohar, K. G., Dev, Vas
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Photoexcitation dynamics in a three-step photoionization of atomic uranium has been investigated using time-resolved two-color three-photon and delayed three-color three-photon photoionization signals. Investigations are carried out in an atomic beam of uranium coupled to a high-resolution time-of-flight mass spectrometer using three tunable pulsed dye lasers. Dependence of both the signals on the second-step laser photon fluence is studied. Excited-level-to-excited-level photoexcitation cross section and photoionization cross section from the second excited level are simultaneously determined by analyzing the two-color three-photon and three-color three-photon photoionization signals using population rate equation model. Using this methodology, photoexcitation and photoionization cross sections at seven values of the second-step laser wavelength have been measured. From the measured values of the photoexcitation cross sections, we have obtained excited-level-to-excited-level transition probabilities and compared these with the values reported in the literature.
ISSN:0946-2171
1432-0649
DOI:10.1007/s00340-015-6192-z