Understanding photoexcitation dynamics in a three-step photoionization of atomic uranium and measurement of photoexcitation and photoionization cross sections
Photoexcitation dynamics in a three-step photoionization of atomic uranium has been investigated using time-resolved two-color three-photon and delayed three-color three-photon photoionization signals. Investigations are carried out in an atomic beam of uranium coupled to a high-resolution time-of-f...
Gespeichert in:
Veröffentlicht in: | Applied physics. B, Lasers and optics Lasers and optics, 2015-09, Vol.120 (4), p.751-758 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Photoexcitation dynamics in a three-step photoionization of atomic uranium has been investigated using time-resolved two-color three-photon and delayed three-color three-photon photoionization signals. Investigations are carried out in an atomic beam of uranium coupled to a high-resolution time-of-flight mass spectrometer using three tunable pulsed dye lasers. Dependence of both the signals on the second-step laser photon fluence is studied. Excited-level-to-excited-level photoexcitation cross section and photoionization cross section from the second excited level are simultaneously determined by analyzing the two-color three-photon and three-color three-photon photoionization signals using population rate equation model. Using this methodology, photoexcitation and photoionization cross sections at seven values of the second-step laser wavelength have been measured. From the measured values of the photoexcitation cross sections, we have obtained excited-level-to-excited-level transition probabilities and compared these with the values reported in the literature. |
---|---|
ISSN: | 0946-2171 1432-0649 |
DOI: | 10.1007/s00340-015-6192-z |