An imaging spectrometer based on high resolution microscopy of fluorescent aluminum oxide crystal detectors
Fluorescent Nuclear Track Detector (FNTD) technology was tested as an imaging, spectroscopic tool for radionuclide analysis. This investigation intended to distinguish between characteristic α-particles of 239Pu (5.2 MeV), 234U (4.8 MeV) and 238U (4.2 MeV). FNTDs are Al2O3:C,Mg single crystals with...
Gespeichert in:
Veröffentlicht in: | Radiation measurements 2013-09, Vol.56, p.273-276 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 276 |
---|---|
container_issue | |
container_start_page | 273 |
container_title | Radiation measurements |
container_volume | 56 |
creator | Bartz, J.A. Zeissler, C.J. Fomenko, V.V. Akselrod, M.S. |
description | Fluorescent Nuclear Track Detector (FNTD) technology was tested as an imaging, spectroscopic tool for radionuclide analysis. This investigation intended to distinguish between characteristic α-particles of 239Pu (5.2 MeV), 234U (4.8 MeV) and 238U (4.2 MeV). FNTDs are Al2O3:C,Mg single crystals with color centers that undergo radiochromic transformation. FNTD readout is non-destructive and is performed with fluorescence laser scanning confocal microscopy. Ionization events register in the detector as bright fluorescent features on a weak fluorescent background. Images were acquired at several incrementing depths in the detector to produce 3D datasets. Spectroscopic information was obtained by measuring α-particle range in the detector after 3D image reconstruction. The resolution of this technique is fundamentally limited by particle range straggling (about 3.8% (k = 1) at these α-particle energies). The spectroscopic line-width as full width at half maximum (FWHM) was determined to be 0.4 MeV enabling discrimination between the isotopes of interest.
► FNTD technology was investigated as a tool for radionuclide imaging spectroscopy. ► Particle energies were determined using 3D image processing of fluorescent tracks. ► The α-particle energy line-width for 241Am was determined to be 0.4 MeV. ► Range straggling fundamentally limits the resolution of the range measurement technique. |
doi_str_mv | 10.1016/j.radmeas.2013.01.041 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1744727641</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1350448713000644</els_id><sourcerecordid>1744727641</sourcerecordid><originalsourceid>FETCH-LOGICAL-c471t-63b104a128ae54c4db7245cfeaf757e055fb8ec43a4433451efc99bba6e219663</originalsourceid><addsrcrecordid>eNqFkUFv1DAQhSMEEqXwE5B8QeKS1OOM7eSEqooCUqVe4Gw5znjrJYkXO0Hsv8fLrrj25LH8zbzxe1X1HngDHNTNvkl2nMnmRnBoGw4NR3hRXUGn-5r3Qr4sdSt5jdjp19WbnPecc-yVvKp-3i4szHYXlh3LB3JrijOtlNhgM40sLuwp7J5YohynbQ3lPgeXYnbxcGTRMz9tsTw6WlZmp20Oyzaz-CeMxFw65tVObCzz3BpTflu98nbK9O5yXlc_7j9_v_taPzx--XZ3-1A71LDWqh2AowXRWZLocBy0QOk8Wa-lJi6lHzpy2FrEtkUJ5F3fD4NVJKBXqr2uPp7nHlL8tVFezRzKhtNkF4pbNqARtdAK4XlUQotCSiUKKs_o6fs5kTeHVJxLRwPcnHIwe3PJwZxyMBwM_yfx4SJhs7OTT3ZxIf9vFrpTvOdYuE9njoo1vwMlk12gxdEYUvHPjDE8o_QXKROirg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1513425562</pqid></control><display><type>article</type><title>An imaging spectrometer based on high resolution microscopy of fluorescent aluminum oxide crystal detectors</title><source>Access via ScienceDirect (Elsevier)</source><creator>Bartz, J.A. ; Zeissler, C.J. ; Fomenko, V.V. ; Akselrod, M.S.</creator><creatorcontrib>Bartz, J.A. ; Zeissler, C.J. ; Fomenko, V.V. ; Akselrod, M.S.</creatorcontrib><description>Fluorescent Nuclear Track Detector (FNTD) technology was tested as an imaging, spectroscopic tool for radionuclide analysis. This investigation intended to distinguish between characteristic α-particles of 239Pu (5.2 MeV), 234U (4.8 MeV) and 238U (4.2 MeV). FNTDs are Al2O3:C,Mg single crystals with color centers that undergo radiochromic transformation. FNTD readout is non-destructive and is performed with fluorescence laser scanning confocal microscopy. Ionization events register in the detector as bright fluorescent features on a weak fluorescent background. Images were acquired at several incrementing depths in the detector to produce 3D datasets. Spectroscopic information was obtained by measuring α-particle range in the detector after 3D image reconstruction. The resolution of this technique is fundamentally limited by particle range straggling (about 3.8% (k = 1) at these α-particle energies). The spectroscopic line-width as full width at half maximum (FWHM) was determined to be 0.4 MeV enabling discrimination between the isotopes of interest.
► FNTD technology was investigated as a tool for radionuclide imaging spectroscopy. ► Particle energies were determined using 3D image processing of fluorescent tracks. ► The α-particle energy line-width for 241Am was determined to be 0.4 MeV. ► Range straggling fundamentally limits the resolution of the range measurement technique.</description><identifier>ISSN: 1350-4487</identifier><identifier>EISSN: 1879-0925</identifier><identifier>DOI: 10.1016/j.radmeas.2013.01.041</identifier><language>eng</language><publisher>Kidlington: Elsevier Ltd</publisher><subject>Aluminum oxide ; Detectors ; Earth sciences ; Earth, ocean, space ; Exact sciences and technology ; Fluorescent nuclear track detectors ; Geochronology ; Hot particles ; Imaging spectrometers ; Ionization ; Isotope geochemistry. Geochronology ; Luminescence ; Microscopy ; Radionuclide analysis ; Spectroscopic analysis ; Spectroscopy ; Three dimensional ; α-Particle spectroscopy</subject><ispartof>Radiation measurements, 2013-09, Vol.56, p.273-276</ispartof><rights>2013 Elsevier Ltd</rights><rights>2014 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c471t-63b104a128ae54c4db7245cfeaf757e055fb8ec43a4433451efc99bba6e219663</citedby><cites>FETCH-LOGICAL-c471t-63b104a128ae54c4db7245cfeaf757e055fb8ec43a4433451efc99bba6e219663</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.radmeas.2013.01.041$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>309,310,314,780,784,789,790,3550,23930,23931,25140,27924,27925,45995</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=27860904$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Bartz, J.A.</creatorcontrib><creatorcontrib>Zeissler, C.J.</creatorcontrib><creatorcontrib>Fomenko, V.V.</creatorcontrib><creatorcontrib>Akselrod, M.S.</creatorcontrib><title>An imaging spectrometer based on high resolution microscopy of fluorescent aluminum oxide crystal detectors</title><title>Radiation measurements</title><description>Fluorescent Nuclear Track Detector (FNTD) technology was tested as an imaging, spectroscopic tool for radionuclide analysis. This investigation intended to distinguish between characteristic α-particles of 239Pu (5.2 MeV), 234U (4.8 MeV) and 238U (4.2 MeV). FNTDs are Al2O3:C,Mg single crystals with color centers that undergo radiochromic transformation. FNTD readout is non-destructive and is performed with fluorescence laser scanning confocal microscopy. Ionization events register in the detector as bright fluorescent features on a weak fluorescent background. Images were acquired at several incrementing depths in the detector to produce 3D datasets. Spectroscopic information was obtained by measuring α-particle range in the detector after 3D image reconstruction. The resolution of this technique is fundamentally limited by particle range straggling (about 3.8% (k = 1) at these α-particle energies). The spectroscopic line-width as full width at half maximum (FWHM) was determined to be 0.4 MeV enabling discrimination between the isotopes of interest.
► FNTD technology was investigated as a tool for radionuclide imaging spectroscopy. ► Particle energies were determined using 3D image processing of fluorescent tracks. ► The α-particle energy line-width for 241Am was determined to be 0.4 MeV. ► Range straggling fundamentally limits the resolution of the range measurement technique.</description><subject>Aluminum oxide</subject><subject>Detectors</subject><subject>Earth sciences</subject><subject>Earth, ocean, space</subject><subject>Exact sciences and technology</subject><subject>Fluorescent nuclear track detectors</subject><subject>Geochronology</subject><subject>Hot particles</subject><subject>Imaging spectrometers</subject><subject>Ionization</subject><subject>Isotope geochemistry. Geochronology</subject><subject>Luminescence</subject><subject>Microscopy</subject><subject>Radionuclide analysis</subject><subject>Spectroscopic analysis</subject><subject>Spectroscopy</subject><subject>Three dimensional</subject><subject>α-Particle spectroscopy</subject><issn>1350-4487</issn><issn>1879-0925</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNqFkUFv1DAQhSMEEqXwE5B8QeKS1OOM7eSEqooCUqVe4Gw5znjrJYkXO0Hsv8fLrrj25LH8zbzxe1X1HngDHNTNvkl2nMnmRnBoGw4NR3hRXUGn-5r3Qr4sdSt5jdjp19WbnPecc-yVvKp-3i4szHYXlh3LB3JrijOtlNhgM40sLuwp7J5YohynbQ3lPgeXYnbxcGTRMz9tsTw6WlZmp20Oyzaz-CeMxFw65tVObCzz3BpTflu98nbK9O5yXlc_7j9_v_taPzx--XZ3-1A71LDWqh2AowXRWZLocBy0QOk8Wa-lJi6lHzpy2FrEtkUJ5F3fD4NVJKBXqr2uPp7nHlL8tVFezRzKhtNkF4pbNqARtdAK4XlUQotCSiUKKs_o6fs5kTeHVJxLRwPcnHIwe3PJwZxyMBwM_yfx4SJhs7OTT3ZxIf9vFrpTvOdYuE9njoo1vwMlk12gxdEYUvHPjDE8o_QXKROirg</recordid><startdate>20130901</startdate><enddate>20130901</enddate><creator>Bartz, J.A.</creator><creator>Zeissler, C.J.</creator><creator>Fomenko, V.V.</creator><creator>Akselrod, M.S.</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QH</scope><scope>7UA</scope><scope>C1K</scope><scope>F1W</scope><scope>H97</scope><scope>L.G</scope><scope>7QF</scope><scope>7SR</scope><scope>7SU</scope><scope>7U5</scope><scope>8FD</scope><scope>FR3</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20130901</creationdate><title>An imaging spectrometer based on high resolution microscopy of fluorescent aluminum oxide crystal detectors</title><author>Bartz, J.A. ; Zeissler, C.J. ; Fomenko, V.V. ; Akselrod, M.S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c471t-63b104a128ae54c4db7245cfeaf757e055fb8ec43a4433451efc99bba6e219663</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Aluminum oxide</topic><topic>Detectors</topic><topic>Earth sciences</topic><topic>Earth, ocean, space</topic><topic>Exact sciences and technology</topic><topic>Fluorescent nuclear track detectors</topic><topic>Geochronology</topic><topic>Hot particles</topic><topic>Imaging spectrometers</topic><topic>Ionization</topic><topic>Isotope geochemistry. Geochronology</topic><topic>Luminescence</topic><topic>Microscopy</topic><topic>Radionuclide analysis</topic><topic>Spectroscopic analysis</topic><topic>Spectroscopy</topic><topic>Three dimensional</topic><topic>α-Particle spectroscopy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bartz, J.A.</creatorcontrib><creatorcontrib>Zeissler, C.J.</creatorcontrib><creatorcontrib>Fomenko, V.V.</creatorcontrib><creatorcontrib>Akselrod, M.S.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Aqualine</collection><collection>Water Resources Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Aluminium Industry Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Environmental Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Radiation measurements</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bartz, J.A.</au><au>Zeissler, C.J.</au><au>Fomenko, V.V.</au><au>Akselrod, M.S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An imaging spectrometer based on high resolution microscopy of fluorescent aluminum oxide crystal detectors</atitle><jtitle>Radiation measurements</jtitle><date>2013-09-01</date><risdate>2013</risdate><volume>56</volume><spage>273</spage><epage>276</epage><pages>273-276</pages><issn>1350-4487</issn><eissn>1879-0925</eissn><abstract>Fluorescent Nuclear Track Detector (FNTD) technology was tested as an imaging, spectroscopic tool for radionuclide analysis. This investigation intended to distinguish between characteristic α-particles of 239Pu (5.2 MeV), 234U (4.8 MeV) and 238U (4.2 MeV). FNTDs are Al2O3:C,Mg single crystals with color centers that undergo radiochromic transformation. FNTD readout is non-destructive and is performed with fluorescence laser scanning confocal microscopy. Ionization events register in the detector as bright fluorescent features on a weak fluorescent background. Images were acquired at several incrementing depths in the detector to produce 3D datasets. Spectroscopic information was obtained by measuring α-particle range in the detector after 3D image reconstruction. The resolution of this technique is fundamentally limited by particle range straggling (about 3.8% (k = 1) at these α-particle energies). The spectroscopic line-width as full width at half maximum (FWHM) was determined to be 0.4 MeV enabling discrimination between the isotopes of interest.
► FNTD technology was investigated as a tool for radionuclide imaging spectroscopy. ► Particle energies were determined using 3D image processing of fluorescent tracks. ► The α-particle energy line-width for 241Am was determined to be 0.4 MeV. ► Range straggling fundamentally limits the resolution of the range measurement technique.</abstract><cop>Kidlington</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.radmeas.2013.01.041</doi><tpages>4</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1350-4487 |
ispartof | Radiation measurements, 2013-09, Vol.56, p.273-276 |
issn | 1350-4487 1879-0925 |
language | eng |
recordid | cdi_proquest_miscellaneous_1744727641 |
source | Access via ScienceDirect (Elsevier) |
subjects | Aluminum oxide Detectors Earth sciences Earth, ocean, space Exact sciences and technology Fluorescent nuclear track detectors Geochronology Hot particles Imaging spectrometers Ionization Isotope geochemistry. Geochronology Luminescence Microscopy Radionuclide analysis Spectroscopic analysis Spectroscopy Three dimensional α-Particle spectroscopy |
title | An imaging spectrometer based on high resolution microscopy of fluorescent aluminum oxide crystal detectors |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T02%3A20%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20imaging%20spectrometer%20based%20on%20high%20resolution%20microscopy%20of%20fluorescent%20aluminum%20oxide%20crystal%20detectors&rft.jtitle=Radiation%20measurements&rft.au=Bartz,%20J.A.&rft.date=2013-09-01&rft.volume=56&rft.spage=273&rft.epage=276&rft.pages=273-276&rft.issn=1350-4487&rft.eissn=1879-0925&rft_id=info:doi/10.1016/j.radmeas.2013.01.041&rft_dat=%3Cproquest_cross%3E1744727641%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1513425562&rft_id=info:pmid/&rft_els_id=S1350448713000644&rfr_iscdi=true |