Estimation local convective boiling heat transfer coefficient in mini channel

The aim of this paper is to present an inverse heat conduction method used for determining the local convective boiling heat transfer coefficient in mini channel for pure water, copper nanofluid with using three different concentrations of nanoparticles: 5mg/L, 10mg/L and 50mg/L. Sequential specific...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International communications in heat and mass transfer 2012-02, Vol.39 (2), p.304-310
Hauptverfasser: Farahani, S.D., Kowsary, F.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 310
container_issue 2
container_start_page 304
container_title International communications in heat and mass transfer
container_volume 39
creator Farahani, S.D.
Kowsary, F.
description The aim of this paper is to present an inverse heat conduction method used for determining the local convective boiling heat transfer coefficient in mini channel for pure water, copper nanofluid with using three different concentrations of nanoparticles: 5mg/L, 10mg/L and 50mg/L. Sequential specification function method is used to solve the IHCP and estimate the space-variable convective heat transfer coefficient. The uncertainties in the estimated in heat transfer coefficient are calculated using Bias and Variance errors. The technique is used in a series of numerical experiments to provide the optimum experimental design for a boiling heat transfer investigation.
doi_str_mv 10.1016/j.icheatmasstransfer.2011.11.007
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1744719510</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S073519331100251X</els_id><sourcerecordid>1744719510</sourcerecordid><originalsourceid>FETCH-LOGICAL-c438t-3fbbfffd4240e103074673df9e890709ec0170841bec956d3909cbdf69cc91e73</originalsourceid><addsrcrecordid>eNqNkE1LAzEURYMoWKv_YTZCN1Pfa9JkslOKnyhudD1kMi82ZZqpk7HgvzdDqxsXChfe5nDv4zA2QZgioLxYTb1dkunXJsa-MyE66qYzQJymAKgDNsJC6RxQFYdsBIrPc9ScH7OTGFcAgAUWI_Z0HXu_Nr1vQ9a01jSZbcOWbO-3lFWtb3x4y4ad7HskAeSct55Cn_mQrX3wmV2aEKg5ZUfONJHO9nfMXm-uXxZ3-ePz7f3i6jG3ghd9zl1VOedqMRNACByUkIrXTlOhQYEmm76GQmBFVs9lzTVoW9VOams1kuJjNtn1brr2_YNiX659tNQ0JlD7EUtUQijU89T9JwqoJRdCFgm93KG2a2PsyJWbLrnpPhM0cLJclb-ll4P0MiVJTxXn-zUTk0yXGOvjT89sLhGkGr562HGULG19aomDUEu175L8sm79_0e_AFnKpKY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1019634468</pqid></control><display><type>article</type><title>Estimation local convective boiling heat transfer coefficient in mini channel</title><source>Elsevier ScienceDirect Journals</source><creator>Farahani, S.D. ; Kowsary, F.</creator><creatorcontrib>Farahani, S.D. ; Kowsary, F.</creatorcontrib><description>The aim of this paper is to present an inverse heat conduction method used for determining the local convective boiling heat transfer coefficient in mini channel for pure water, copper nanofluid with using three different concentrations of nanoparticles: 5mg/L, 10mg/L and 50mg/L. Sequential specification function method is used to solve the IHCP and estimate the space-variable convective heat transfer coefficient. The uncertainties in the estimated in heat transfer coefficient are calculated using Bias and Variance errors. The technique is used in a series of numerical experiments to provide the optimum experimental design for a boiling heat transfer investigation.</description><identifier>ISSN: 0735-1933</identifier><identifier>EISSN: 1879-0178</identifier><identifier>DOI: 10.1016/j.icheatmasstransfer.2011.11.007</identifier><identifier>CODEN: IHMTDL</identifier><language>eng</language><publisher>Kidlington: Elsevier Ltd</publisher><subject>Applied sciences ; Boiling ; Channels ; Chemistry ; Colloidal state and disperse state ; Condensed matter: structure, mechanical and thermal properties ; Convective heat transfer coefficient ; Energy ; Energy. Thermal use of fuels ; Exact sciences and technology ; General and physical chemistry ; Heat transfer ; Heat transfer coefficients ; Mathematical analysis ; Mathematical models ; Mini ; Nanofluid ; Nanostructure ; Physical and chemical studies. Granulometry. Electrokinetic phenomena ; Physics ; Sequential function specification method ; Theoretical studies. Data and constants. Metering ; Thermal properties of condensed matter ; Thermal properties of small particles, nanocrystals, nanotubes</subject><ispartof>International communications in heat and mass transfer, 2012-02, Vol.39 (2), p.304-310</ispartof><rights>2011 Elsevier Ltd</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c438t-3fbbfffd4240e103074673df9e890709ec0170841bec956d3909cbdf69cc91e73</citedby><cites>FETCH-LOGICAL-c438t-3fbbfffd4240e103074673df9e890709ec0170841bec956d3909cbdf69cc91e73</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S073519331100251X$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3536,27903,27904,65309</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=25610670$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Farahani, S.D.</creatorcontrib><creatorcontrib>Kowsary, F.</creatorcontrib><title>Estimation local convective boiling heat transfer coefficient in mini channel</title><title>International communications in heat and mass transfer</title><description>The aim of this paper is to present an inverse heat conduction method used for determining the local convective boiling heat transfer coefficient in mini channel for pure water, copper nanofluid with using three different concentrations of nanoparticles: 5mg/L, 10mg/L and 50mg/L. Sequential specification function method is used to solve the IHCP and estimate the space-variable convective heat transfer coefficient. The uncertainties in the estimated in heat transfer coefficient are calculated using Bias and Variance errors. The technique is used in a series of numerical experiments to provide the optimum experimental design for a boiling heat transfer investigation.</description><subject>Applied sciences</subject><subject>Boiling</subject><subject>Channels</subject><subject>Chemistry</subject><subject>Colloidal state and disperse state</subject><subject>Condensed matter: structure, mechanical and thermal properties</subject><subject>Convective heat transfer coefficient</subject><subject>Energy</subject><subject>Energy. Thermal use of fuels</subject><subject>Exact sciences and technology</subject><subject>General and physical chemistry</subject><subject>Heat transfer</subject><subject>Heat transfer coefficients</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Mini</subject><subject>Nanofluid</subject><subject>Nanostructure</subject><subject>Physical and chemical studies. Granulometry. Electrokinetic phenomena</subject><subject>Physics</subject><subject>Sequential function specification method</subject><subject>Theoretical studies. Data and constants. Metering</subject><subject>Thermal properties of condensed matter</subject><subject>Thermal properties of small particles, nanocrystals, nanotubes</subject><issn>0735-1933</issn><issn>1879-0178</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNqNkE1LAzEURYMoWKv_YTZCN1Pfa9JkslOKnyhudD1kMi82ZZqpk7HgvzdDqxsXChfe5nDv4zA2QZgioLxYTb1dkunXJsa-MyE66qYzQJymAKgDNsJC6RxQFYdsBIrPc9ScH7OTGFcAgAUWI_Z0HXu_Nr1vQ9a01jSZbcOWbO-3lFWtb3x4y4ad7HskAeSct55Cn_mQrX3wmV2aEKg5ZUfONJHO9nfMXm-uXxZ3-ePz7f3i6jG3ghd9zl1VOedqMRNACByUkIrXTlOhQYEmm76GQmBFVs9lzTVoW9VOams1kuJjNtn1brr2_YNiX659tNQ0JlD7EUtUQijU89T9JwqoJRdCFgm93KG2a2PsyJWbLrnpPhM0cLJclb-ll4P0MiVJTxXn-zUTk0yXGOvjT89sLhGkGr562HGULG19aomDUEu175L8sm79_0e_AFnKpKY</recordid><startdate>20120201</startdate><enddate>20120201</enddate><creator>Farahani, S.D.</creator><creator>Kowsary, F.</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>KR7</scope><scope>L7M</scope></search><sort><creationdate>20120201</creationdate><title>Estimation local convective boiling heat transfer coefficient in mini channel</title><author>Farahani, S.D. ; Kowsary, F.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c438t-3fbbfffd4240e103074673df9e890709ec0170841bec956d3909cbdf69cc91e73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Applied sciences</topic><topic>Boiling</topic><topic>Channels</topic><topic>Chemistry</topic><topic>Colloidal state and disperse state</topic><topic>Condensed matter: structure, mechanical and thermal properties</topic><topic>Convective heat transfer coefficient</topic><topic>Energy</topic><topic>Energy. Thermal use of fuels</topic><topic>Exact sciences and technology</topic><topic>General and physical chemistry</topic><topic>Heat transfer</topic><topic>Heat transfer coefficients</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Mini</topic><topic>Nanofluid</topic><topic>Nanostructure</topic><topic>Physical and chemical studies. Granulometry. Electrokinetic phenomena</topic><topic>Physics</topic><topic>Sequential function specification method</topic><topic>Theoretical studies. Data and constants. Metering</topic><topic>Thermal properties of condensed matter</topic><topic>Thermal properties of small particles, nanocrystals, nanotubes</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Farahani, S.D.</creatorcontrib><creatorcontrib>Kowsary, F.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>International communications in heat and mass transfer</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Farahani, S.D.</au><au>Kowsary, F.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Estimation local convective boiling heat transfer coefficient in mini channel</atitle><jtitle>International communications in heat and mass transfer</jtitle><date>2012-02-01</date><risdate>2012</risdate><volume>39</volume><issue>2</issue><spage>304</spage><epage>310</epage><pages>304-310</pages><issn>0735-1933</issn><eissn>1879-0178</eissn><coden>IHMTDL</coden><abstract>The aim of this paper is to present an inverse heat conduction method used for determining the local convective boiling heat transfer coefficient in mini channel for pure water, copper nanofluid with using three different concentrations of nanoparticles: 5mg/L, 10mg/L and 50mg/L. Sequential specification function method is used to solve the IHCP and estimate the space-variable convective heat transfer coefficient. The uncertainties in the estimated in heat transfer coefficient are calculated using Bias and Variance errors. The technique is used in a series of numerical experiments to provide the optimum experimental design for a boiling heat transfer investigation.</abstract><cop>Kidlington</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.icheatmasstransfer.2011.11.007</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0735-1933
ispartof International communications in heat and mass transfer, 2012-02, Vol.39 (2), p.304-310
issn 0735-1933
1879-0178
language eng
recordid cdi_proquest_miscellaneous_1744719510
source Elsevier ScienceDirect Journals
subjects Applied sciences
Boiling
Channels
Chemistry
Colloidal state and disperse state
Condensed matter: structure, mechanical and thermal properties
Convective heat transfer coefficient
Energy
Energy. Thermal use of fuels
Exact sciences and technology
General and physical chemistry
Heat transfer
Heat transfer coefficients
Mathematical analysis
Mathematical models
Mini
Nanofluid
Nanostructure
Physical and chemical studies. Granulometry. Electrokinetic phenomena
Physics
Sequential function specification method
Theoretical studies. Data and constants. Metering
Thermal properties of condensed matter
Thermal properties of small particles, nanocrystals, nanotubes
title Estimation local convective boiling heat transfer coefficient in mini channel
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T02%3A01%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Estimation%20local%20convective%20boiling%20heat%20transfer%20coefficient%20in%20mini%20channel&rft.jtitle=International%20communications%20in%20heat%20and%20mass%20transfer&rft.au=Farahani,%20S.D.&rft.date=2012-02-01&rft.volume=39&rft.issue=2&rft.spage=304&rft.epage=310&rft.pages=304-310&rft.issn=0735-1933&rft.eissn=1879-0178&rft.coden=IHMTDL&rft_id=info:doi/10.1016/j.icheatmasstransfer.2011.11.007&rft_dat=%3Cproquest_cross%3E1744719510%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1019634468&rft_id=info:pmid/&rft_els_id=S073519331100251X&rfr_iscdi=true