Estimation local convective boiling heat transfer coefficient in mini channel
The aim of this paper is to present an inverse heat conduction method used for determining the local convective boiling heat transfer coefficient in mini channel for pure water, copper nanofluid with using three different concentrations of nanoparticles: 5mg/L, 10mg/L and 50mg/L. Sequential specific...
Gespeichert in:
Veröffentlicht in: | International communications in heat and mass transfer 2012-02, Vol.39 (2), p.304-310 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 310 |
---|---|
container_issue | 2 |
container_start_page | 304 |
container_title | International communications in heat and mass transfer |
container_volume | 39 |
creator | Farahani, S.D. Kowsary, F. |
description | The aim of this paper is to present an inverse heat conduction method used for determining the local convective boiling heat transfer coefficient in mini channel for pure water, copper nanofluid with using three different concentrations of nanoparticles: 5mg/L, 10mg/L and 50mg/L. Sequential specification function method is used to solve the IHCP and estimate the space-variable convective heat transfer coefficient. The uncertainties in the estimated in heat transfer coefficient are calculated using Bias and Variance errors. The technique is used in a series of numerical experiments to provide the optimum experimental design for a boiling heat transfer investigation. |
doi_str_mv | 10.1016/j.icheatmasstransfer.2011.11.007 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1744719510</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S073519331100251X</els_id><sourcerecordid>1744719510</sourcerecordid><originalsourceid>FETCH-LOGICAL-c438t-3fbbfffd4240e103074673df9e890709ec0170841bec956d3909cbdf69cc91e73</originalsourceid><addsrcrecordid>eNqNkE1LAzEURYMoWKv_YTZCN1Pfa9JkslOKnyhudD1kMi82ZZqpk7HgvzdDqxsXChfe5nDv4zA2QZgioLxYTb1dkunXJsa-MyE66qYzQJymAKgDNsJC6RxQFYdsBIrPc9ScH7OTGFcAgAUWI_Z0HXu_Nr1vQ9a01jSZbcOWbO-3lFWtb3x4y4ad7HskAeSct55Cn_mQrX3wmV2aEKg5ZUfONJHO9nfMXm-uXxZ3-ePz7f3i6jG3ghd9zl1VOedqMRNACByUkIrXTlOhQYEmm76GQmBFVs9lzTVoW9VOams1kuJjNtn1brr2_YNiX659tNQ0JlD7EUtUQijU89T9JwqoJRdCFgm93KG2a2PsyJWbLrnpPhM0cLJclb-ll4P0MiVJTxXn-zUTk0yXGOvjT89sLhGkGr562HGULG19aomDUEu175L8sm79_0e_AFnKpKY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1019634468</pqid></control><display><type>article</type><title>Estimation local convective boiling heat transfer coefficient in mini channel</title><source>Elsevier ScienceDirect Journals</source><creator>Farahani, S.D. ; Kowsary, F.</creator><creatorcontrib>Farahani, S.D. ; Kowsary, F.</creatorcontrib><description>The aim of this paper is to present an inverse heat conduction method used for determining the local convective boiling heat transfer coefficient in mini channel for pure water, copper nanofluid with using three different concentrations of nanoparticles: 5mg/L, 10mg/L and 50mg/L. Sequential specification function method is used to solve the IHCP and estimate the space-variable convective heat transfer coefficient. The uncertainties in the estimated in heat transfer coefficient are calculated using Bias and Variance errors. The technique is used in a series of numerical experiments to provide the optimum experimental design for a boiling heat transfer investigation.</description><identifier>ISSN: 0735-1933</identifier><identifier>EISSN: 1879-0178</identifier><identifier>DOI: 10.1016/j.icheatmasstransfer.2011.11.007</identifier><identifier>CODEN: IHMTDL</identifier><language>eng</language><publisher>Kidlington: Elsevier Ltd</publisher><subject>Applied sciences ; Boiling ; Channels ; Chemistry ; Colloidal state and disperse state ; Condensed matter: structure, mechanical and thermal properties ; Convective heat transfer coefficient ; Energy ; Energy. Thermal use of fuels ; Exact sciences and technology ; General and physical chemistry ; Heat transfer ; Heat transfer coefficients ; Mathematical analysis ; Mathematical models ; Mini ; Nanofluid ; Nanostructure ; Physical and chemical studies. Granulometry. Electrokinetic phenomena ; Physics ; Sequential function specification method ; Theoretical studies. Data and constants. Metering ; Thermal properties of condensed matter ; Thermal properties of small particles, nanocrystals, nanotubes</subject><ispartof>International communications in heat and mass transfer, 2012-02, Vol.39 (2), p.304-310</ispartof><rights>2011 Elsevier Ltd</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c438t-3fbbfffd4240e103074673df9e890709ec0170841bec956d3909cbdf69cc91e73</citedby><cites>FETCH-LOGICAL-c438t-3fbbfffd4240e103074673df9e890709ec0170841bec956d3909cbdf69cc91e73</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S073519331100251X$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3536,27903,27904,65309</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=25610670$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Farahani, S.D.</creatorcontrib><creatorcontrib>Kowsary, F.</creatorcontrib><title>Estimation local convective boiling heat transfer coefficient in mini channel</title><title>International communications in heat and mass transfer</title><description>The aim of this paper is to present an inverse heat conduction method used for determining the local convective boiling heat transfer coefficient in mini channel for pure water, copper nanofluid with using three different concentrations of nanoparticles: 5mg/L, 10mg/L and 50mg/L. Sequential specification function method is used to solve the IHCP and estimate the space-variable convective heat transfer coefficient. The uncertainties in the estimated in heat transfer coefficient are calculated using Bias and Variance errors. The technique is used in a series of numerical experiments to provide the optimum experimental design for a boiling heat transfer investigation.</description><subject>Applied sciences</subject><subject>Boiling</subject><subject>Channels</subject><subject>Chemistry</subject><subject>Colloidal state and disperse state</subject><subject>Condensed matter: structure, mechanical and thermal properties</subject><subject>Convective heat transfer coefficient</subject><subject>Energy</subject><subject>Energy. Thermal use of fuels</subject><subject>Exact sciences and technology</subject><subject>General and physical chemistry</subject><subject>Heat transfer</subject><subject>Heat transfer coefficients</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Mini</subject><subject>Nanofluid</subject><subject>Nanostructure</subject><subject>Physical and chemical studies. Granulometry. Electrokinetic phenomena</subject><subject>Physics</subject><subject>Sequential function specification method</subject><subject>Theoretical studies. Data and constants. Metering</subject><subject>Thermal properties of condensed matter</subject><subject>Thermal properties of small particles, nanocrystals, nanotubes</subject><issn>0735-1933</issn><issn>1879-0178</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNqNkE1LAzEURYMoWKv_YTZCN1Pfa9JkslOKnyhudD1kMi82ZZqpk7HgvzdDqxsXChfe5nDv4zA2QZgioLxYTb1dkunXJsa-MyE66qYzQJymAKgDNsJC6RxQFYdsBIrPc9ScH7OTGFcAgAUWI_Z0HXu_Nr1vQ9a01jSZbcOWbO-3lFWtb3x4y4ad7HskAeSct55Cn_mQrX3wmV2aEKg5ZUfONJHO9nfMXm-uXxZ3-ePz7f3i6jG3ghd9zl1VOedqMRNACByUkIrXTlOhQYEmm76GQmBFVs9lzTVoW9VOams1kuJjNtn1brr2_YNiX659tNQ0JlD7EUtUQijU89T9JwqoJRdCFgm93KG2a2PsyJWbLrnpPhM0cLJclb-ll4P0MiVJTxXn-zUTk0yXGOvjT89sLhGkGr562HGULG19aomDUEu175L8sm79_0e_AFnKpKY</recordid><startdate>20120201</startdate><enddate>20120201</enddate><creator>Farahani, S.D.</creator><creator>Kowsary, F.</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>KR7</scope><scope>L7M</scope></search><sort><creationdate>20120201</creationdate><title>Estimation local convective boiling heat transfer coefficient in mini channel</title><author>Farahani, S.D. ; Kowsary, F.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c438t-3fbbfffd4240e103074673df9e890709ec0170841bec956d3909cbdf69cc91e73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Applied sciences</topic><topic>Boiling</topic><topic>Channels</topic><topic>Chemistry</topic><topic>Colloidal state and disperse state</topic><topic>Condensed matter: structure, mechanical and thermal properties</topic><topic>Convective heat transfer coefficient</topic><topic>Energy</topic><topic>Energy. Thermal use of fuels</topic><topic>Exact sciences and technology</topic><topic>General and physical chemistry</topic><topic>Heat transfer</topic><topic>Heat transfer coefficients</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Mini</topic><topic>Nanofluid</topic><topic>Nanostructure</topic><topic>Physical and chemical studies. Granulometry. Electrokinetic phenomena</topic><topic>Physics</topic><topic>Sequential function specification method</topic><topic>Theoretical studies. Data and constants. Metering</topic><topic>Thermal properties of condensed matter</topic><topic>Thermal properties of small particles, nanocrystals, nanotubes</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Farahani, S.D.</creatorcontrib><creatorcontrib>Kowsary, F.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>International communications in heat and mass transfer</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Farahani, S.D.</au><au>Kowsary, F.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Estimation local convective boiling heat transfer coefficient in mini channel</atitle><jtitle>International communications in heat and mass transfer</jtitle><date>2012-02-01</date><risdate>2012</risdate><volume>39</volume><issue>2</issue><spage>304</spage><epage>310</epage><pages>304-310</pages><issn>0735-1933</issn><eissn>1879-0178</eissn><coden>IHMTDL</coden><abstract>The aim of this paper is to present an inverse heat conduction method used for determining the local convective boiling heat transfer coefficient in mini channel for pure water, copper nanofluid with using three different concentrations of nanoparticles: 5mg/L, 10mg/L and 50mg/L. Sequential specification function method is used to solve the IHCP and estimate the space-variable convective heat transfer coefficient. The uncertainties in the estimated in heat transfer coefficient are calculated using Bias and Variance errors. The technique is used in a series of numerical experiments to provide the optimum experimental design for a boiling heat transfer investigation.</abstract><cop>Kidlington</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.icheatmasstransfer.2011.11.007</doi><tpages>7</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0735-1933 |
ispartof | International communications in heat and mass transfer, 2012-02, Vol.39 (2), p.304-310 |
issn | 0735-1933 1879-0178 |
language | eng |
recordid | cdi_proquest_miscellaneous_1744719510 |
source | Elsevier ScienceDirect Journals |
subjects | Applied sciences Boiling Channels Chemistry Colloidal state and disperse state Condensed matter: structure, mechanical and thermal properties Convective heat transfer coefficient Energy Energy. Thermal use of fuels Exact sciences and technology General and physical chemistry Heat transfer Heat transfer coefficients Mathematical analysis Mathematical models Mini Nanofluid Nanostructure Physical and chemical studies. Granulometry. Electrokinetic phenomena Physics Sequential function specification method Theoretical studies. Data and constants. Metering Thermal properties of condensed matter Thermal properties of small particles, nanocrystals, nanotubes |
title | Estimation local convective boiling heat transfer coefficient in mini channel |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T02%3A01%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Estimation%20local%20convective%20boiling%20heat%20transfer%20coefficient%20in%20mini%20channel&rft.jtitle=International%20communications%20in%20heat%20and%20mass%20transfer&rft.au=Farahani,%20S.D.&rft.date=2012-02-01&rft.volume=39&rft.issue=2&rft.spage=304&rft.epage=310&rft.pages=304-310&rft.issn=0735-1933&rft.eissn=1879-0178&rft.coden=IHMTDL&rft_id=info:doi/10.1016/j.icheatmasstransfer.2011.11.007&rft_dat=%3Cproquest_cross%3E1744719510%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1019634468&rft_id=info:pmid/&rft_els_id=S073519331100251X&rfr_iscdi=true |