On new constructions in the Blaschke-Bol problem

We find several essentially new constructions of hexagonal -webs based on a combination of quadratic and linear families of circles. They are used to construct new types of hexagonal -webs, which is an advance in the solution of the Blaschke-Bol problem (1938) on the classification of such webs. Unl...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Sbornik. Mathematics 2014-01, Vol.205 (11), p.1650-1667
1. Verfasser: Nilov, F. K.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1667
container_issue 11
container_start_page 1650
container_title Sbornik. Mathematics
container_volume 205
creator Nilov, F. K.
description We find several essentially new constructions of hexagonal -webs based on a combination of quadratic and linear families of circles. They are used to construct new types of hexagonal -webs, which is an advance in the solution of the Blaschke-Bol problem (1938) on the classification of such webs. Unlike many known examples, in our proofs we give an explicit parallelizing diffeomorphism. We give a brief survey of all known examples of hexagonal -webs and their properties. In conclusion, we formulate several conjectures and open problems. Bibliography: 13 titles.
doi_str_mv 10.1070/SM2014v205n11ABEH004432
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1744717918</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1744717918</sourcerecordid><originalsourceid>FETCH-LOGICAL-c394t-38ab4ba9f1c9f284f1af3e4e9358c5266f6312ab55c5ed7edca69a93c3dec59d3</originalsourceid><addsrcrecordid>eNqFkM1OwzAQhC0EEqXwDETiAJeA13-Jjw0qFKlVD4Wz5Ti2mpImIXZBvD1G4QjisruHb0azg9Al4FvAGb7brAgG9k4wbwFmxXyBMWOUHKEJMJGnLMfkON5YsJQLEKfozPsdxpgTyCcIr9uktR-J6VofhoMJdTySuk3C1iZFo73Zvtq06JqkH7qysftzdOJ04-3Fz56il4f58_0iXa4fn-5ny9RQyUJKc12yUksHRjqSMwfaUcuspDw3nAjhBAWiS84Nt1VmK6OF1JIaWlnDZUWn6Gr07XyolTd1sGYbU7bWBEUIFYzEOUU3IxXTvR2sD2pfe2ObRre2O3gFGWMZZBLyiGYjaobO-8E61Q_1Xg-fCrD6blL90WRUXo_KuuvVrjsMbXxcrTaFiqgCUCA4Vn3lIkl_If_z_wKGfoJH</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1744717918</pqid></control><display><type>article</type><title>On new constructions in the Blaschke-Bol problem</title><source>IOP Publishing Journals</source><source>Alma/SFX Local Collection</source><creator>Nilov, F. K.</creator><creatorcontrib>Nilov, F. K.</creatorcontrib><description>We find several essentially new constructions of hexagonal -webs based on a combination of quadratic and linear families of circles. They are used to construct new types of hexagonal -webs, which is an advance in the solution of the Blaschke-Bol problem (1938) on the classification of such webs. Unlike many known examples, in our proofs we give an explicit parallelizing diffeomorphism. We give a brief survey of all known examples of hexagonal -webs and their properties. In conclusion, we formulate several conjectures and open problems. Bibliography: 13 titles.</description><identifier>ISSN: 1064-5616</identifier><identifier>EISSN: 1468-4802</identifier><identifier>DOI: 10.1070/SM2014v205n11ABEH004432</identifier><language>eng</language><publisher>United States: London Mathematical Society, Turpion Ltd and the Russian Academy of Sciences</publisher><subject>CALCULATION METHODS ; CLASSIFICATION ; Construction ; hexagonal closure condition ; Mathematical analysis ; MATHEMATICAL METHODS AND COMPUTING ; MATHEMATICAL MODELS ; MATHEMATICAL SOLUTIONS ; pencil of circles ; Proving ; quadratic family of circles ; Webs ; webs of circles</subject><ispartof>Sbornik. Mathematics, 2014-01, Vol.205 (11), p.1650-1667</ispartof><rights>2014 Russian Academy of Sciences (DoM), London Mathematical Society, Turpion Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c394t-38ab4ba9f1c9f284f1af3e4e9358c5266f6312ab55c5ed7edca69a93c3dec59d3</citedby><cites>FETCH-LOGICAL-c394t-38ab4ba9f1c9f284f1af3e4e9358c5266f6312ab55c5ed7edca69a93c3dec59d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1070/SM2014v205n11ABEH004432/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>230,314,776,780,881,27901,27902,53821</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/22364222$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Nilov, F. K.</creatorcontrib><title>On new constructions in the Blaschke-Bol problem</title><title>Sbornik. Mathematics</title><addtitle>MSB</addtitle><addtitle>Sb. Math</addtitle><description>We find several essentially new constructions of hexagonal -webs based on a combination of quadratic and linear families of circles. They are used to construct new types of hexagonal -webs, which is an advance in the solution of the Blaschke-Bol problem (1938) on the classification of such webs. Unlike many known examples, in our proofs we give an explicit parallelizing diffeomorphism. We give a brief survey of all known examples of hexagonal -webs and their properties. In conclusion, we formulate several conjectures and open problems. Bibliography: 13 titles.</description><subject>CALCULATION METHODS</subject><subject>CLASSIFICATION</subject><subject>Construction</subject><subject>hexagonal closure condition</subject><subject>Mathematical analysis</subject><subject>MATHEMATICAL METHODS AND COMPUTING</subject><subject>MATHEMATICAL MODELS</subject><subject>MATHEMATICAL SOLUTIONS</subject><subject>pencil of circles</subject><subject>Proving</subject><subject>quadratic family of circles</subject><subject>Webs</subject><subject>webs of circles</subject><issn>1064-5616</issn><issn>1468-4802</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNqFkM1OwzAQhC0EEqXwDETiAJeA13-Jjw0qFKlVD4Wz5Ti2mpImIXZBvD1G4QjisruHb0azg9Al4FvAGb7brAgG9k4wbwFmxXyBMWOUHKEJMJGnLMfkON5YsJQLEKfozPsdxpgTyCcIr9uktR-J6VofhoMJdTySuk3C1iZFo73Zvtq06JqkH7qysftzdOJ04-3Fz56il4f58_0iXa4fn-5ny9RQyUJKc12yUksHRjqSMwfaUcuspDw3nAjhBAWiS84Nt1VmK6OF1JIaWlnDZUWn6Gr07XyolTd1sGYbU7bWBEUIFYzEOUU3IxXTvR2sD2pfe2ObRre2O3gFGWMZZBLyiGYjaobO-8E61Q_1Xg-fCrD6blL90WRUXo_KuuvVrjsMbXxcrTaFiqgCUCA4Vn3lIkl_If_z_wKGfoJH</recordid><startdate>20140101</startdate><enddate>20140101</enddate><creator>Nilov, F. K.</creator><general>London Mathematical Society, Turpion Ltd and the Russian Academy of Sciences</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>7U5</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>KR7</scope><scope>L7M</scope><scope>OTOTI</scope></search><sort><creationdate>20140101</creationdate><title>On new constructions in the Blaschke-Bol problem</title><author>Nilov, F. K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c394t-38ab4ba9f1c9f284f1af3e4e9358c5266f6312ab55c5ed7edca69a93c3dec59d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>CALCULATION METHODS</topic><topic>CLASSIFICATION</topic><topic>Construction</topic><topic>hexagonal closure condition</topic><topic>Mathematical analysis</topic><topic>MATHEMATICAL METHODS AND COMPUTING</topic><topic>MATHEMATICAL MODELS</topic><topic>MATHEMATICAL SOLUTIONS</topic><topic>pencil of circles</topic><topic>Proving</topic><topic>quadratic family of circles</topic><topic>Webs</topic><topic>webs of circles</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nilov, F. K.</creatorcontrib><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>OSTI.GOV</collection><jtitle>Sbornik. Mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nilov, F. K.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On new constructions in the Blaschke-Bol problem</atitle><jtitle>Sbornik. Mathematics</jtitle><stitle>MSB</stitle><addtitle>Sb. Math</addtitle><date>2014-01-01</date><risdate>2014</risdate><volume>205</volume><issue>11</issue><spage>1650</spage><epage>1667</epage><pages>1650-1667</pages><issn>1064-5616</issn><eissn>1468-4802</eissn><abstract>We find several essentially new constructions of hexagonal -webs based on a combination of quadratic and linear families of circles. They are used to construct new types of hexagonal -webs, which is an advance in the solution of the Blaschke-Bol problem (1938) on the classification of such webs. Unlike many known examples, in our proofs we give an explicit parallelizing diffeomorphism. We give a brief survey of all known examples of hexagonal -webs and their properties. In conclusion, we formulate several conjectures and open problems. Bibliography: 13 titles.</abstract><cop>United States</cop><pub>London Mathematical Society, Turpion Ltd and the Russian Academy of Sciences</pub><doi>10.1070/SM2014v205n11ABEH004432</doi><tpages>18</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1064-5616
ispartof Sbornik. Mathematics, 2014-01, Vol.205 (11), p.1650-1667
issn 1064-5616
1468-4802
language eng
recordid cdi_proquest_miscellaneous_1744717918
source IOP Publishing Journals; Alma/SFX Local Collection
subjects CALCULATION METHODS
CLASSIFICATION
Construction
hexagonal closure condition
Mathematical analysis
MATHEMATICAL METHODS AND COMPUTING
MATHEMATICAL MODELS
MATHEMATICAL SOLUTIONS
pencil of circles
Proving
quadratic family of circles
Webs
webs of circles
title On new constructions in the Blaschke-Bol problem
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T16%3A05%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20new%20constructions%20in%20the%20Blaschke-Bol%20problem&rft.jtitle=Sbornik.%20Mathematics&rft.au=Nilov,%20F.%20K.&rft.date=2014-01-01&rft.volume=205&rft.issue=11&rft.spage=1650&rft.epage=1667&rft.pages=1650-1667&rft.issn=1064-5616&rft.eissn=1468-4802&rft_id=info:doi/10.1070/SM2014v205n11ABEH004432&rft_dat=%3Cproquest_cross%3E1744717918%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1744717918&rft_id=info:pmid/&rfr_iscdi=true