On new constructions in the Blaschke-Bol problem
We find several essentially new constructions of hexagonal -webs based on a combination of quadratic and linear families of circles. They are used to construct new types of hexagonal -webs, which is an advance in the solution of the Blaschke-Bol problem (1938) on the classification of such webs. Unl...
Gespeichert in:
Veröffentlicht in: | Sbornik. Mathematics 2014-01, Vol.205 (11), p.1650-1667 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1667 |
---|---|
container_issue | 11 |
container_start_page | 1650 |
container_title | Sbornik. Mathematics |
container_volume | 205 |
creator | Nilov, F. K. |
description | We find several essentially new constructions of hexagonal -webs based on a combination of quadratic and linear families of circles. They are used to construct new types of hexagonal -webs, which is an advance in the solution of the Blaschke-Bol problem (1938) on the classification of such webs. Unlike many known examples, in our proofs we give an explicit parallelizing diffeomorphism. We give a brief survey of all known examples of hexagonal -webs and their properties. In conclusion, we formulate several conjectures and open problems. Bibliography: 13 titles. |
doi_str_mv | 10.1070/SM2014v205n11ABEH004432 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1744717918</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1744717918</sourcerecordid><originalsourceid>FETCH-LOGICAL-c394t-38ab4ba9f1c9f284f1af3e4e9358c5266f6312ab55c5ed7edca69a93c3dec59d3</originalsourceid><addsrcrecordid>eNqFkM1OwzAQhC0EEqXwDETiAJeA13-Jjw0qFKlVD4Wz5Ti2mpImIXZBvD1G4QjisruHb0azg9Al4FvAGb7brAgG9k4wbwFmxXyBMWOUHKEJMJGnLMfkON5YsJQLEKfozPsdxpgTyCcIr9uktR-J6VofhoMJdTySuk3C1iZFo73Zvtq06JqkH7qysftzdOJ04-3Fz56il4f58_0iXa4fn-5ny9RQyUJKc12yUksHRjqSMwfaUcuspDw3nAjhBAWiS84Nt1VmK6OF1JIaWlnDZUWn6Gr07XyolTd1sGYbU7bWBEUIFYzEOUU3IxXTvR2sD2pfe2ObRre2O3gFGWMZZBLyiGYjaobO-8E61Q_1Xg-fCrD6blL90WRUXo_KuuvVrjsMbXxcrTaFiqgCUCA4Vn3lIkl_If_z_wKGfoJH</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1744717918</pqid></control><display><type>article</type><title>On new constructions in the Blaschke-Bol problem</title><source>IOP Publishing Journals</source><source>Alma/SFX Local Collection</source><creator>Nilov, F. K.</creator><creatorcontrib>Nilov, F. K.</creatorcontrib><description>We find several essentially new constructions of hexagonal -webs based on a combination of quadratic and linear families of circles. They are used to construct new types of hexagonal -webs, which is an advance in the solution of the Blaschke-Bol problem (1938) on the classification of such webs. Unlike many known examples, in our proofs we give an explicit parallelizing diffeomorphism. We give a brief survey of all known examples of hexagonal -webs and their properties. In conclusion, we formulate several conjectures and open problems. Bibliography: 13 titles.</description><identifier>ISSN: 1064-5616</identifier><identifier>EISSN: 1468-4802</identifier><identifier>DOI: 10.1070/SM2014v205n11ABEH004432</identifier><language>eng</language><publisher>United States: London Mathematical Society, Turpion Ltd and the Russian Academy of Sciences</publisher><subject>CALCULATION METHODS ; CLASSIFICATION ; Construction ; hexagonal closure condition ; Mathematical analysis ; MATHEMATICAL METHODS AND COMPUTING ; MATHEMATICAL MODELS ; MATHEMATICAL SOLUTIONS ; pencil of circles ; Proving ; quadratic family of circles ; Webs ; webs of circles</subject><ispartof>Sbornik. Mathematics, 2014-01, Vol.205 (11), p.1650-1667</ispartof><rights>2014 Russian Academy of Sciences (DoM), London Mathematical Society, Turpion Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c394t-38ab4ba9f1c9f284f1af3e4e9358c5266f6312ab55c5ed7edca69a93c3dec59d3</citedby><cites>FETCH-LOGICAL-c394t-38ab4ba9f1c9f284f1af3e4e9358c5266f6312ab55c5ed7edca69a93c3dec59d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1070/SM2014v205n11ABEH004432/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>230,314,776,780,881,27901,27902,53821</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/22364222$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Nilov, F. K.</creatorcontrib><title>On new constructions in the Blaschke-Bol problem</title><title>Sbornik. Mathematics</title><addtitle>MSB</addtitle><addtitle>Sb. Math</addtitle><description>We find several essentially new constructions of hexagonal -webs based on a combination of quadratic and linear families of circles. They are used to construct new types of hexagonal -webs, which is an advance in the solution of the Blaschke-Bol problem (1938) on the classification of such webs. Unlike many known examples, in our proofs we give an explicit parallelizing diffeomorphism. We give a brief survey of all known examples of hexagonal -webs and their properties. In conclusion, we formulate several conjectures and open problems. Bibliography: 13 titles.</description><subject>CALCULATION METHODS</subject><subject>CLASSIFICATION</subject><subject>Construction</subject><subject>hexagonal closure condition</subject><subject>Mathematical analysis</subject><subject>MATHEMATICAL METHODS AND COMPUTING</subject><subject>MATHEMATICAL MODELS</subject><subject>MATHEMATICAL SOLUTIONS</subject><subject>pencil of circles</subject><subject>Proving</subject><subject>quadratic family of circles</subject><subject>Webs</subject><subject>webs of circles</subject><issn>1064-5616</issn><issn>1468-4802</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNqFkM1OwzAQhC0EEqXwDETiAJeA13-Jjw0qFKlVD4Wz5Ti2mpImIXZBvD1G4QjisruHb0azg9Al4FvAGb7brAgG9k4wbwFmxXyBMWOUHKEJMJGnLMfkON5YsJQLEKfozPsdxpgTyCcIr9uktR-J6VofhoMJdTySuk3C1iZFo73Zvtq06JqkH7qysftzdOJ04-3Fz56il4f58_0iXa4fn-5ny9RQyUJKc12yUksHRjqSMwfaUcuspDw3nAjhBAWiS84Nt1VmK6OF1JIaWlnDZUWn6Gr07XyolTd1sGYbU7bWBEUIFYzEOUU3IxXTvR2sD2pfe2ObRre2O3gFGWMZZBLyiGYjaobO-8E61Q_1Xg-fCrD6blL90WRUXo_KuuvVrjsMbXxcrTaFiqgCUCA4Vn3lIkl_If_z_wKGfoJH</recordid><startdate>20140101</startdate><enddate>20140101</enddate><creator>Nilov, F. K.</creator><general>London Mathematical Society, Turpion Ltd and the Russian Academy of Sciences</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>7U5</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>KR7</scope><scope>L7M</scope><scope>OTOTI</scope></search><sort><creationdate>20140101</creationdate><title>On new constructions in the Blaschke-Bol problem</title><author>Nilov, F. K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c394t-38ab4ba9f1c9f284f1af3e4e9358c5266f6312ab55c5ed7edca69a93c3dec59d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>CALCULATION METHODS</topic><topic>CLASSIFICATION</topic><topic>Construction</topic><topic>hexagonal closure condition</topic><topic>Mathematical analysis</topic><topic>MATHEMATICAL METHODS AND COMPUTING</topic><topic>MATHEMATICAL MODELS</topic><topic>MATHEMATICAL SOLUTIONS</topic><topic>pencil of circles</topic><topic>Proving</topic><topic>quadratic family of circles</topic><topic>Webs</topic><topic>webs of circles</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nilov, F. K.</creatorcontrib><collection>CrossRef</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>OSTI.GOV</collection><jtitle>Sbornik. Mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nilov, F. K.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On new constructions in the Blaschke-Bol problem</atitle><jtitle>Sbornik. Mathematics</jtitle><stitle>MSB</stitle><addtitle>Sb. Math</addtitle><date>2014-01-01</date><risdate>2014</risdate><volume>205</volume><issue>11</issue><spage>1650</spage><epage>1667</epage><pages>1650-1667</pages><issn>1064-5616</issn><eissn>1468-4802</eissn><abstract>We find several essentially new constructions of hexagonal -webs based on a combination of quadratic and linear families of circles. They are used to construct new types of hexagonal -webs, which is an advance in the solution of the Blaschke-Bol problem (1938) on the classification of such webs. Unlike many known examples, in our proofs we give an explicit parallelizing diffeomorphism. We give a brief survey of all known examples of hexagonal -webs and their properties. In conclusion, we formulate several conjectures and open problems. Bibliography: 13 titles.</abstract><cop>United States</cop><pub>London Mathematical Society, Turpion Ltd and the Russian Academy of Sciences</pub><doi>10.1070/SM2014v205n11ABEH004432</doi><tpages>18</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1064-5616 |
ispartof | Sbornik. Mathematics, 2014-01, Vol.205 (11), p.1650-1667 |
issn | 1064-5616 1468-4802 |
language | eng |
recordid | cdi_proquest_miscellaneous_1744717918 |
source | IOP Publishing Journals; Alma/SFX Local Collection |
subjects | CALCULATION METHODS CLASSIFICATION Construction hexagonal closure condition Mathematical analysis MATHEMATICAL METHODS AND COMPUTING MATHEMATICAL MODELS MATHEMATICAL SOLUTIONS pencil of circles Proving quadratic family of circles Webs webs of circles |
title | On new constructions in the Blaschke-Bol problem |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T16%3A05%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20new%20constructions%20in%20the%20Blaschke-Bol%20problem&rft.jtitle=Sbornik.%20Mathematics&rft.au=Nilov,%20F.%20K.&rft.date=2014-01-01&rft.volume=205&rft.issue=11&rft.spage=1650&rft.epage=1667&rft.pages=1650-1667&rft.issn=1064-5616&rft.eissn=1468-4802&rft_id=info:doi/10.1070/SM2014v205n11ABEH004432&rft_dat=%3Cproquest_cross%3E1744717918%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1744717918&rft_id=info:pmid/&rfr_iscdi=true |