CFD investigation of nanofluid effects (cooling performance and pressure drop) in mini-channel heat sink

For improvement in information technology (IT), removing heat from electrical devices is an important factor, and current activities try to investigate (numerically, experimentally) new methods of thermal load managing. Mini-channel liquid cooling is one of the candidates for this purpose. Nanofluid...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International communications in heat and mass transfer 2013-01, Vol.40, p.58-66
Hauptverfasser: Keshavarz Moraveji, Mostafa, Mohammadi Ardehali, Reza, Ijam, Ali
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 66
container_issue
container_start_page 58
container_title International communications in heat and mass transfer
container_volume 40
creator Keshavarz Moraveji, Mostafa
Mohammadi Ardehali, Reza
Ijam, Ali
description For improvement in information technology (IT), removing heat from electrical devices is an important factor, and current activities try to investigate (numerically, experimentally) new methods of thermal load managing. Mini-channel liquid cooling is one of the candidates for this purpose. Nanofluid as an innovative heat-transfer fluid was used in mini-channel heat sink. Modeling analyzed in this study is a mini-channel heat sink with 20×20mm bottom. For this purpose, five nanoparticle volume fractions namely 0.8, 1.6, 2.4, 3.2 and 4% in five inlet velocities for both types of nanoparticle containing TiO2 and SiC were used. Furthermore, effect of a nanoparticle volume fraction on the convective heat transfer coefficient was investigated in different Reynolds numbers. Modeling results were compared with reference analytical calculations. In addition according to the modeling results, correlated equations were obtained for Nusselt number and friction factor, and its accuracies were acceptable.
doi_str_mv 10.1016/j.icheatmasstransfer.2012.10.021
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1744717887</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0735193312002539</els_id><sourcerecordid>1283660355</sourcerecordid><originalsourceid>FETCH-LOGICAL-c438t-b745ffeb3393c2bfa1898239fe4a9bb3e4e7fe83f8cbb1df03f3fa0b6731eb593</originalsourceid><addsrcrecordid>eNqNkUFv1DAQhS0EEkvhP_iCtByyteNkbd9ASwtFlbjA2bKdcddLYgdPthL_HkdbceEApznMp_dm3iNky9mOM76_Pu2iP4JdJou4FJswQNm1jLd1vWMtf0Y2XEndMC7Vc7JhUvQN10K8JK8QT4wxrrjakOPh9iON6RFwiQ92iTnRHGiyKYfxHAcKIYBfkG59zmNMD3SGEnKZbPJAbRroXADxXIAOJc_vqhSdYoqNP9qUYKTriRRj-vGavAh2RHjzNK_I99ubb4fPzf3XT3eHD_eN74RaGie7vlo6IbTwrQuWK61aoQN0VjsnoAMZQImgvHN8CEwEESxzeyk4uF6LK7K96M4l_zzXt8wU0cM42gT5jIbLrpM1EyX_jbZK7PdM9H1F319QXzJigWDmEidbfhnOzNqHOZm_-zBrHytR-6gSb5_cLHo7hsr4iH90Wsm0Vmx94MuFg5rSY6wq6CPUuIdYahVmyPH_TX8DtcmvHg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1283660355</pqid></control><display><type>article</type><title>CFD investigation of nanofluid effects (cooling performance and pressure drop) in mini-channel heat sink</title><source>Elsevier ScienceDirect Journals</source><creator>Keshavarz Moraveji, Mostafa ; Mohammadi Ardehali, Reza ; Ijam, Ali</creator><creatorcontrib>Keshavarz Moraveji, Mostafa ; Mohammadi Ardehali, Reza ; Ijam, Ali</creatorcontrib><description>For improvement in information technology (IT), removing heat from electrical devices is an important factor, and current activities try to investigate (numerically, experimentally) new methods of thermal load managing. Mini-channel liquid cooling is one of the candidates for this purpose. Nanofluid as an innovative heat-transfer fluid was used in mini-channel heat sink. Modeling analyzed in this study is a mini-channel heat sink with 20×20mm bottom. For this purpose, five nanoparticle volume fractions namely 0.8, 1.6, 2.4, 3.2 and 4% in five inlet velocities for both types of nanoparticle containing TiO2 and SiC were used. Furthermore, effect of a nanoparticle volume fraction on the convective heat transfer coefficient was investigated in different Reynolds numbers. Modeling results were compared with reference analytical calculations. In addition according to the modeling results, correlated equations were obtained for Nusselt number and friction factor, and its accuracies were acceptable.</description><identifier>ISSN: 0735-1933</identifier><identifier>EISSN: 1879-0178</identifier><identifier>DOI: 10.1016/j.icheatmasstransfer.2012.10.021</identifier><identifier>CODEN: IHMTDL</identifier><language>eng</language><publisher>Kidlington: Elsevier Ltd</publisher><subject>Applied sciences ; CFD ; Chemistry ; Colloidal state and disperse state ; Computational fluid dynamics ; Condensed matter: structure, mechanical and thermal properties ; Convective heat transfer ; Design. Technologies. Operation analysis. Testing ; Electronics ; Exact sciences and technology ; Fluid flow ; General and physical chemistry ; Heat sinks ; Integrated circuits ; Mathematical models ; Mini-channel heat sink ; Nanocomposites ; Nanofluid ; Nanofluids ; Nanomaterials ; Nanostructure ; Physical and chemical studies. Granulometry. Electrokinetic phenomena ; Physics ; Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices ; Thermal properties of condensed matter ; Thermal properties of small particles, nanocrystals, nanotubes ; Titanium dioxide</subject><ispartof>International communications in heat and mass transfer, 2013-01, Vol.40, p.58-66</ispartof><rights>2012 Elsevier Ltd</rights><rights>2014 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c438t-b745ffeb3393c2bfa1898239fe4a9bb3e4e7fe83f8cbb1df03f3fa0b6731eb593</citedby><cites>FETCH-LOGICAL-c438t-b745ffeb3393c2bfa1898239fe4a9bb3e4e7fe83f8cbb1df03f3fa0b6731eb593</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0735193312002539$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3536,4009,27902,27903,27904,65309</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=27099809$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Keshavarz Moraveji, Mostafa</creatorcontrib><creatorcontrib>Mohammadi Ardehali, Reza</creatorcontrib><creatorcontrib>Ijam, Ali</creatorcontrib><title>CFD investigation of nanofluid effects (cooling performance and pressure drop) in mini-channel heat sink</title><title>International communications in heat and mass transfer</title><description>For improvement in information technology (IT), removing heat from electrical devices is an important factor, and current activities try to investigate (numerically, experimentally) new methods of thermal load managing. Mini-channel liquid cooling is one of the candidates for this purpose. Nanofluid as an innovative heat-transfer fluid was used in mini-channel heat sink. Modeling analyzed in this study is a mini-channel heat sink with 20×20mm bottom. For this purpose, five nanoparticle volume fractions namely 0.8, 1.6, 2.4, 3.2 and 4% in five inlet velocities for both types of nanoparticle containing TiO2 and SiC were used. Furthermore, effect of a nanoparticle volume fraction on the convective heat transfer coefficient was investigated in different Reynolds numbers. Modeling results were compared with reference analytical calculations. In addition according to the modeling results, correlated equations were obtained for Nusselt number and friction factor, and its accuracies were acceptable.</description><subject>Applied sciences</subject><subject>CFD</subject><subject>Chemistry</subject><subject>Colloidal state and disperse state</subject><subject>Computational fluid dynamics</subject><subject>Condensed matter: structure, mechanical and thermal properties</subject><subject>Convective heat transfer</subject><subject>Design. Technologies. Operation analysis. Testing</subject><subject>Electronics</subject><subject>Exact sciences and technology</subject><subject>Fluid flow</subject><subject>General and physical chemistry</subject><subject>Heat sinks</subject><subject>Integrated circuits</subject><subject>Mathematical models</subject><subject>Mini-channel heat sink</subject><subject>Nanocomposites</subject><subject>Nanofluid</subject><subject>Nanofluids</subject><subject>Nanomaterials</subject><subject>Nanostructure</subject><subject>Physical and chemical studies. Granulometry. Electrokinetic phenomena</subject><subject>Physics</subject><subject>Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices</subject><subject>Thermal properties of condensed matter</subject><subject>Thermal properties of small particles, nanocrystals, nanotubes</subject><subject>Titanium dioxide</subject><issn>0735-1933</issn><issn>1879-0178</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNqNkUFv1DAQhS0EEkvhP_iCtByyteNkbd9ASwtFlbjA2bKdcddLYgdPthL_HkdbceEApznMp_dm3iNky9mOM76_Pu2iP4JdJou4FJswQNm1jLd1vWMtf0Y2XEndMC7Vc7JhUvQN10K8JK8QT4wxrrjakOPh9iON6RFwiQ92iTnRHGiyKYfxHAcKIYBfkG59zmNMD3SGEnKZbPJAbRroXADxXIAOJc_vqhSdYoqNP9qUYKTriRRj-vGavAh2RHjzNK_I99ubb4fPzf3XT3eHD_eN74RaGie7vlo6IbTwrQuWK61aoQN0VjsnoAMZQImgvHN8CEwEESxzeyk4uF6LK7K96M4l_zzXt8wU0cM42gT5jIbLrpM1EyX_jbZK7PdM9H1F319QXzJigWDmEidbfhnOzNqHOZm_-zBrHytR-6gSb5_cLHo7hsr4iH90Wsm0Vmx94MuFg5rSY6wq6CPUuIdYahVmyPH_TX8DtcmvHg</recordid><startdate>201301</startdate><enddate>201301</enddate><creator>Keshavarz Moraveji, Mostafa</creator><creator>Mohammadi Ardehali, Reza</creator><creator>Ijam, Ali</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>KR7</scope><scope>L7M</scope></search><sort><creationdate>201301</creationdate><title>CFD investigation of nanofluid effects (cooling performance and pressure drop) in mini-channel heat sink</title><author>Keshavarz Moraveji, Mostafa ; Mohammadi Ardehali, Reza ; Ijam, Ali</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c438t-b745ffeb3393c2bfa1898239fe4a9bb3e4e7fe83f8cbb1df03f3fa0b6731eb593</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Applied sciences</topic><topic>CFD</topic><topic>Chemistry</topic><topic>Colloidal state and disperse state</topic><topic>Computational fluid dynamics</topic><topic>Condensed matter: structure, mechanical and thermal properties</topic><topic>Convective heat transfer</topic><topic>Design. Technologies. Operation analysis. Testing</topic><topic>Electronics</topic><topic>Exact sciences and technology</topic><topic>Fluid flow</topic><topic>General and physical chemistry</topic><topic>Heat sinks</topic><topic>Integrated circuits</topic><topic>Mathematical models</topic><topic>Mini-channel heat sink</topic><topic>Nanocomposites</topic><topic>Nanofluid</topic><topic>Nanofluids</topic><topic>Nanomaterials</topic><topic>Nanostructure</topic><topic>Physical and chemical studies. Granulometry. Electrokinetic phenomena</topic><topic>Physics</topic><topic>Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices</topic><topic>Thermal properties of condensed matter</topic><topic>Thermal properties of small particles, nanocrystals, nanotubes</topic><topic>Titanium dioxide</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Keshavarz Moraveji, Mostafa</creatorcontrib><creatorcontrib>Mohammadi Ardehali, Reza</creatorcontrib><creatorcontrib>Ijam, Ali</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>International communications in heat and mass transfer</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Keshavarz Moraveji, Mostafa</au><au>Mohammadi Ardehali, Reza</au><au>Ijam, Ali</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>CFD investigation of nanofluid effects (cooling performance and pressure drop) in mini-channel heat sink</atitle><jtitle>International communications in heat and mass transfer</jtitle><date>2013-01</date><risdate>2013</risdate><volume>40</volume><spage>58</spage><epage>66</epage><pages>58-66</pages><issn>0735-1933</issn><eissn>1879-0178</eissn><coden>IHMTDL</coden><abstract>For improvement in information technology (IT), removing heat from electrical devices is an important factor, and current activities try to investigate (numerically, experimentally) new methods of thermal load managing. Mini-channel liquid cooling is one of the candidates for this purpose. Nanofluid as an innovative heat-transfer fluid was used in mini-channel heat sink. Modeling analyzed in this study is a mini-channel heat sink with 20×20mm bottom. For this purpose, five nanoparticle volume fractions namely 0.8, 1.6, 2.4, 3.2 and 4% in five inlet velocities for both types of nanoparticle containing TiO2 and SiC were used. Furthermore, effect of a nanoparticle volume fraction on the convective heat transfer coefficient was investigated in different Reynolds numbers. Modeling results were compared with reference analytical calculations. In addition according to the modeling results, correlated equations were obtained for Nusselt number and friction factor, and its accuracies were acceptable.</abstract><cop>Kidlington</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.icheatmasstransfer.2012.10.021</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0735-1933
ispartof International communications in heat and mass transfer, 2013-01, Vol.40, p.58-66
issn 0735-1933
1879-0178
language eng
recordid cdi_proquest_miscellaneous_1744717887
source Elsevier ScienceDirect Journals
subjects Applied sciences
CFD
Chemistry
Colloidal state and disperse state
Computational fluid dynamics
Condensed matter: structure, mechanical and thermal properties
Convective heat transfer
Design. Technologies. Operation analysis. Testing
Electronics
Exact sciences and technology
Fluid flow
General and physical chemistry
Heat sinks
Integrated circuits
Mathematical models
Mini-channel heat sink
Nanocomposites
Nanofluid
Nanofluids
Nanomaterials
Nanostructure
Physical and chemical studies. Granulometry. Electrokinetic phenomena
Physics
Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices
Thermal properties of condensed matter
Thermal properties of small particles, nanocrystals, nanotubes
Titanium dioxide
title CFD investigation of nanofluid effects (cooling performance and pressure drop) in mini-channel heat sink
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T10%3A15%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=CFD%20investigation%20of%20nanofluid%20effects%20(cooling%20performance%20and%20pressure%20drop)%20in%20mini-channel%20heat%20sink&rft.jtitle=International%20communications%20in%20heat%20and%20mass%20transfer&rft.au=Keshavarz%20Moraveji,%20Mostafa&rft.date=2013-01&rft.volume=40&rft.spage=58&rft.epage=66&rft.pages=58-66&rft.issn=0735-1933&rft.eissn=1879-0178&rft.coden=IHMTDL&rft_id=info:doi/10.1016/j.icheatmasstransfer.2012.10.021&rft_dat=%3Cproquest_cross%3E1283660355%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1283660355&rft_id=info:pmid/&rft_els_id=S0735193312002539&rfr_iscdi=true