CFD investigation of nanofluid effects (cooling performance and pressure drop) in mini-channel heat sink
For improvement in information technology (IT), removing heat from electrical devices is an important factor, and current activities try to investigate (numerically, experimentally) new methods of thermal load managing. Mini-channel liquid cooling is one of the candidates for this purpose. Nanofluid...
Gespeichert in:
Veröffentlicht in: | International communications in heat and mass transfer 2013-01, Vol.40, p.58-66 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 66 |
---|---|
container_issue | |
container_start_page | 58 |
container_title | International communications in heat and mass transfer |
container_volume | 40 |
creator | Keshavarz Moraveji, Mostafa Mohammadi Ardehali, Reza Ijam, Ali |
description | For improvement in information technology (IT), removing heat from electrical devices is an important factor, and current activities try to investigate (numerically, experimentally) new methods of thermal load managing. Mini-channel liquid cooling is one of the candidates for this purpose. Nanofluid as an innovative heat-transfer fluid was used in mini-channel heat sink. Modeling analyzed in this study is a mini-channel heat sink with 20×20mm bottom. For this purpose, five nanoparticle volume fractions namely 0.8, 1.6, 2.4, 3.2 and 4% in five inlet velocities for both types of nanoparticle containing TiO2 and SiC were used. Furthermore, effect of a nanoparticle volume fraction on the convective heat transfer coefficient was investigated in different Reynolds numbers. Modeling results were compared with reference analytical calculations. In addition according to the modeling results, correlated equations were obtained for Nusselt number and friction factor, and its accuracies were acceptable. |
doi_str_mv | 10.1016/j.icheatmasstransfer.2012.10.021 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1744717887</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0735193312002539</els_id><sourcerecordid>1283660355</sourcerecordid><originalsourceid>FETCH-LOGICAL-c438t-b745ffeb3393c2bfa1898239fe4a9bb3e4e7fe83f8cbb1df03f3fa0b6731eb593</originalsourceid><addsrcrecordid>eNqNkUFv1DAQhS0EEkvhP_iCtByyteNkbd9ASwtFlbjA2bKdcddLYgdPthL_HkdbceEApznMp_dm3iNky9mOM76_Pu2iP4JdJou4FJswQNm1jLd1vWMtf0Y2XEndMC7Vc7JhUvQN10K8JK8QT4wxrrjakOPh9iON6RFwiQ92iTnRHGiyKYfxHAcKIYBfkG59zmNMD3SGEnKZbPJAbRroXADxXIAOJc_vqhSdYoqNP9qUYKTriRRj-vGavAh2RHjzNK_I99ubb4fPzf3XT3eHD_eN74RaGie7vlo6IbTwrQuWK61aoQN0VjsnoAMZQImgvHN8CEwEESxzeyk4uF6LK7K96M4l_zzXt8wU0cM42gT5jIbLrpM1EyX_jbZK7PdM9H1F319QXzJigWDmEidbfhnOzNqHOZm_-zBrHytR-6gSb5_cLHo7hsr4iH90Wsm0Vmx94MuFg5rSY6wq6CPUuIdYahVmyPH_TX8DtcmvHg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1283660355</pqid></control><display><type>article</type><title>CFD investigation of nanofluid effects (cooling performance and pressure drop) in mini-channel heat sink</title><source>Elsevier ScienceDirect Journals</source><creator>Keshavarz Moraveji, Mostafa ; Mohammadi Ardehali, Reza ; Ijam, Ali</creator><creatorcontrib>Keshavarz Moraveji, Mostafa ; Mohammadi Ardehali, Reza ; Ijam, Ali</creatorcontrib><description>For improvement in information technology (IT), removing heat from electrical devices is an important factor, and current activities try to investigate (numerically, experimentally) new methods of thermal load managing. Mini-channel liquid cooling is one of the candidates for this purpose. Nanofluid as an innovative heat-transfer fluid was used in mini-channel heat sink. Modeling analyzed in this study is a mini-channel heat sink with 20×20mm bottom. For this purpose, five nanoparticle volume fractions namely 0.8, 1.6, 2.4, 3.2 and 4% in five inlet velocities for both types of nanoparticle containing TiO2 and SiC were used. Furthermore, effect of a nanoparticle volume fraction on the convective heat transfer coefficient was investigated in different Reynolds numbers. Modeling results were compared with reference analytical calculations. In addition according to the modeling results, correlated equations were obtained for Nusselt number and friction factor, and its accuracies were acceptable.</description><identifier>ISSN: 0735-1933</identifier><identifier>EISSN: 1879-0178</identifier><identifier>DOI: 10.1016/j.icheatmasstransfer.2012.10.021</identifier><identifier>CODEN: IHMTDL</identifier><language>eng</language><publisher>Kidlington: Elsevier Ltd</publisher><subject>Applied sciences ; CFD ; Chemistry ; Colloidal state and disperse state ; Computational fluid dynamics ; Condensed matter: structure, mechanical and thermal properties ; Convective heat transfer ; Design. Technologies. Operation analysis. Testing ; Electronics ; Exact sciences and technology ; Fluid flow ; General and physical chemistry ; Heat sinks ; Integrated circuits ; Mathematical models ; Mini-channel heat sink ; Nanocomposites ; Nanofluid ; Nanofluids ; Nanomaterials ; Nanostructure ; Physical and chemical studies. Granulometry. Electrokinetic phenomena ; Physics ; Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices ; Thermal properties of condensed matter ; Thermal properties of small particles, nanocrystals, nanotubes ; Titanium dioxide</subject><ispartof>International communications in heat and mass transfer, 2013-01, Vol.40, p.58-66</ispartof><rights>2012 Elsevier Ltd</rights><rights>2014 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c438t-b745ffeb3393c2bfa1898239fe4a9bb3e4e7fe83f8cbb1df03f3fa0b6731eb593</citedby><cites>FETCH-LOGICAL-c438t-b745ffeb3393c2bfa1898239fe4a9bb3e4e7fe83f8cbb1df03f3fa0b6731eb593</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0735193312002539$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3536,4009,27902,27903,27904,65309</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=27099809$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Keshavarz Moraveji, Mostafa</creatorcontrib><creatorcontrib>Mohammadi Ardehali, Reza</creatorcontrib><creatorcontrib>Ijam, Ali</creatorcontrib><title>CFD investigation of nanofluid effects (cooling performance and pressure drop) in mini-channel heat sink</title><title>International communications in heat and mass transfer</title><description>For improvement in information technology (IT), removing heat from electrical devices is an important factor, and current activities try to investigate (numerically, experimentally) new methods of thermal load managing. Mini-channel liquid cooling is one of the candidates for this purpose. Nanofluid as an innovative heat-transfer fluid was used in mini-channel heat sink. Modeling analyzed in this study is a mini-channel heat sink with 20×20mm bottom. For this purpose, five nanoparticle volume fractions namely 0.8, 1.6, 2.4, 3.2 and 4% in five inlet velocities for both types of nanoparticle containing TiO2 and SiC were used. Furthermore, effect of a nanoparticle volume fraction on the convective heat transfer coefficient was investigated in different Reynolds numbers. Modeling results were compared with reference analytical calculations. In addition according to the modeling results, correlated equations were obtained for Nusselt number and friction factor, and its accuracies were acceptable.</description><subject>Applied sciences</subject><subject>CFD</subject><subject>Chemistry</subject><subject>Colloidal state and disperse state</subject><subject>Computational fluid dynamics</subject><subject>Condensed matter: structure, mechanical and thermal properties</subject><subject>Convective heat transfer</subject><subject>Design. Technologies. Operation analysis. Testing</subject><subject>Electronics</subject><subject>Exact sciences and technology</subject><subject>Fluid flow</subject><subject>General and physical chemistry</subject><subject>Heat sinks</subject><subject>Integrated circuits</subject><subject>Mathematical models</subject><subject>Mini-channel heat sink</subject><subject>Nanocomposites</subject><subject>Nanofluid</subject><subject>Nanofluids</subject><subject>Nanomaterials</subject><subject>Nanostructure</subject><subject>Physical and chemical studies. Granulometry. Electrokinetic phenomena</subject><subject>Physics</subject><subject>Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices</subject><subject>Thermal properties of condensed matter</subject><subject>Thermal properties of small particles, nanocrystals, nanotubes</subject><subject>Titanium dioxide</subject><issn>0735-1933</issn><issn>1879-0178</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNqNkUFv1DAQhS0EEkvhP_iCtByyteNkbd9ASwtFlbjA2bKdcddLYgdPthL_HkdbceEApznMp_dm3iNky9mOM76_Pu2iP4JdJou4FJswQNm1jLd1vWMtf0Y2XEndMC7Vc7JhUvQN10K8JK8QT4wxrrjakOPh9iON6RFwiQ92iTnRHGiyKYfxHAcKIYBfkG59zmNMD3SGEnKZbPJAbRroXADxXIAOJc_vqhSdYoqNP9qUYKTriRRj-vGavAh2RHjzNK_I99ubb4fPzf3XT3eHD_eN74RaGie7vlo6IbTwrQuWK61aoQN0VjsnoAMZQImgvHN8CEwEESxzeyk4uF6LK7K96M4l_zzXt8wU0cM42gT5jIbLrpM1EyX_jbZK7PdM9H1F319QXzJigWDmEidbfhnOzNqHOZm_-zBrHytR-6gSb5_cLHo7hsr4iH90Wsm0Vmx94MuFg5rSY6wq6CPUuIdYahVmyPH_TX8DtcmvHg</recordid><startdate>201301</startdate><enddate>201301</enddate><creator>Keshavarz Moraveji, Mostafa</creator><creator>Mohammadi Ardehali, Reza</creator><creator>Ijam, Ali</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>KR7</scope><scope>L7M</scope></search><sort><creationdate>201301</creationdate><title>CFD investigation of nanofluid effects (cooling performance and pressure drop) in mini-channel heat sink</title><author>Keshavarz Moraveji, Mostafa ; Mohammadi Ardehali, Reza ; Ijam, Ali</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c438t-b745ffeb3393c2bfa1898239fe4a9bb3e4e7fe83f8cbb1df03f3fa0b6731eb593</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Applied sciences</topic><topic>CFD</topic><topic>Chemistry</topic><topic>Colloidal state and disperse state</topic><topic>Computational fluid dynamics</topic><topic>Condensed matter: structure, mechanical and thermal properties</topic><topic>Convective heat transfer</topic><topic>Design. Technologies. Operation analysis. Testing</topic><topic>Electronics</topic><topic>Exact sciences and technology</topic><topic>Fluid flow</topic><topic>General and physical chemistry</topic><topic>Heat sinks</topic><topic>Integrated circuits</topic><topic>Mathematical models</topic><topic>Mini-channel heat sink</topic><topic>Nanocomposites</topic><topic>Nanofluid</topic><topic>Nanofluids</topic><topic>Nanomaterials</topic><topic>Nanostructure</topic><topic>Physical and chemical studies. Granulometry. Electrokinetic phenomena</topic><topic>Physics</topic><topic>Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices</topic><topic>Thermal properties of condensed matter</topic><topic>Thermal properties of small particles, nanocrystals, nanotubes</topic><topic>Titanium dioxide</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Keshavarz Moraveji, Mostafa</creatorcontrib><creatorcontrib>Mohammadi Ardehali, Reza</creatorcontrib><creatorcontrib>Ijam, Ali</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>International communications in heat and mass transfer</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Keshavarz Moraveji, Mostafa</au><au>Mohammadi Ardehali, Reza</au><au>Ijam, Ali</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>CFD investigation of nanofluid effects (cooling performance and pressure drop) in mini-channel heat sink</atitle><jtitle>International communications in heat and mass transfer</jtitle><date>2013-01</date><risdate>2013</risdate><volume>40</volume><spage>58</spage><epage>66</epage><pages>58-66</pages><issn>0735-1933</issn><eissn>1879-0178</eissn><coden>IHMTDL</coden><abstract>For improvement in information technology (IT), removing heat from electrical devices is an important factor, and current activities try to investigate (numerically, experimentally) new methods of thermal load managing. Mini-channel liquid cooling is one of the candidates for this purpose. Nanofluid as an innovative heat-transfer fluid was used in mini-channel heat sink. Modeling analyzed in this study is a mini-channel heat sink with 20×20mm bottom. For this purpose, five nanoparticle volume fractions namely 0.8, 1.6, 2.4, 3.2 and 4% in five inlet velocities for both types of nanoparticle containing TiO2 and SiC were used. Furthermore, effect of a nanoparticle volume fraction on the convective heat transfer coefficient was investigated in different Reynolds numbers. Modeling results were compared with reference analytical calculations. In addition according to the modeling results, correlated equations were obtained for Nusselt number and friction factor, and its accuracies were acceptable.</abstract><cop>Kidlington</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.icheatmasstransfer.2012.10.021</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0735-1933 |
ispartof | International communications in heat and mass transfer, 2013-01, Vol.40, p.58-66 |
issn | 0735-1933 1879-0178 |
language | eng |
recordid | cdi_proquest_miscellaneous_1744717887 |
source | Elsevier ScienceDirect Journals |
subjects | Applied sciences CFD Chemistry Colloidal state and disperse state Computational fluid dynamics Condensed matter: structure, mechanical and thermal properties Convective heat transfer Design. Technologies. Operation analysis. Testing Electronics Exact sciences and technology Fluid flow General and physical chemistry Heat sinks Integrated circuits Mathematical models Mini-channel heat sink Nanocomposites Nanofluid Nanofluids Nanomaterials Nanostructure Physical and chemical studies. Granulometry. Electrokinetic phenomena Physics Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices Thermal properties of condensed matter Thermal properties of small particles, nanocrystals, nanotubes Titanium dioxide |
title | CFD investigation of nanofluid effects (cooling performance and pressure drop) in mini-channel heat sink |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T10%3A15%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=CFD%20investigation%20of%20nanofluid%20effects%20(cooling%20performance%20and%20pressure%20drop)%20in%20mini-channel%20heat%20sink&rft.jtitle=International%20communications%20in%20heat%20and%20mass%20transfer&rft.au=Keshavarz%20Moraveji,%20Mostafa&rft.date=2013-01&rft.volume=40&rft.spage=58&rft.epage=66&rft.pages=58-66&rft.issn=0735-1933&rft.eissn=1879-0178&rft.coden=IHMTDL&rft_id=info:doi/10.1016/j.icheatmasstransfer.2012.10.021&rft_dat=%3Cproquest_cross%3E1283660355%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1283660355&rft_id=info:pmid/&rft_els_id=S0735193312002539&rfr_iscdi=true |