Dosimetry of intensive synchrotron microbeams
Intensive synchrotron X-ray microbeams form an integral part of microbeam radiation therapy (MRT). MRT is a novel radiation medicine modality being developed for inoperable and otherwise untreatable brain tumours. The extremely high dose rate (∼20 kGy/s), laterally fractionated radiation field and s...
Gespeichert in:
Veröffentlicht in: | Radiation measurements 2011-12, Vol.46 (12), p.1560-1565 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1565 |
---|---|
container_issue | 12 |
container_start_page | 1560 |
container_title | Radiation measurements |
container_volume | 46 |
creator | Lerch, M.L.F. Petasecca, M. Cullen, A. Hamad, A. Requardt, H. Bräuer-Krisch, E. Bravin, A. Perevertaylo, V.L. Rosenfeld, A.B. |
description | Intensive synchrotron X-ray microbeams form an integral part of microbeam radiation therapy (MRT). MRT is a novel radiation medicine modality being developed for inoperable and otherwise untreatable brain tumours. The extremely high dose rate (∼20 kGy/s), laterally fractionated radiation field and steep dose gradients utilized in this therapy make real-time dosimetry a significant challenge. In order for this treatment to advance to the clinical trial stage of development real-time dosimetry systems must be developed. This paper demonstrates the capabilities of a new dosimetry system based on an epitaxial silicon detector. The system combines high spatial resolution and real-time readout and we have measured the lateral dose profile of the MRT radiation field which incorporates 59 X-ray microbeams. All microbeam peaks and valley regions between two microbeams are clearly resolved. The measured detector response at any point is reproducible to within 0.5% after scaling for the known synchrotron storage ring beam current lifetime. The variation of the lateral dose profile at different depths in a PMMA phantom has been measured with the results compared to those from Penelope Monte Carlo simulations. The trend in the measured response with depth agrees with the simulation data (within the experimental variation of the central five microbeams peaks and valleys measured). However the measured peak-to-valley ratio response is a factor of 4.5 ± 0.1 times lower than that expected. The disagreement was further investigated and shown to be contributed to by charge recombination effects at the low bias voltages used.
► Real-time dosimetry of synchrotron X-ray microbeams is demonstrated. ► We characterize 59 microbeams as a function of depth in a Perspex phantom. ► Depth dose trend agrees with that calculated using Monte Carlo simulations. ► Suggested optimization of the detector will improve the quantitative agreement. |
doi_str_mv | 10.1016/j.radmeas.2011.08.009 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1744716737</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1350448711004215</els_id><sourcerecordid>1744716737</sourcerecordid><originalsourceid>FETCH-LOGICAL-c405t-e4b83cce6db13253172b4498d6a1ebdeb1ea74b279e28eb35b73b7815cbab8313</originalsourceid><addsrcrecordid>eNqFkE1LAzEQhoMoWKs_QdiL4GXXzCbZZE8i9RMKXvQckuwspuxHTbaF_ntTWrz2NHN43nmZh5BboAVQqB5WRTBNjyYWJQUoqCoorc_IDJSsc1qX4jztTNCccyUvyVWMK0oprysxI_nzGH2PU9hlY5v5YcIh-i1mcTe4nzBOYRyy3rswWjR9vCYXreki3hznnHy_vnwt3vPl59vH4mmZO07FlCO3ijmHVWOBlYKBLC3ntWoqA2gbtIBGclvKGkuFlgkrmZUKhLMmJYHNyf3h7jqMvxuMk-59dNh1ZsBxEzVIziVUksnTKAWqFACwhIoDmt6JMWCr18H3JuwStOcqvdJHk3pvUlOlk8mUuztWmOhM1wYzOB__w-lBKVNJ4h4PHCY1W49BR-dxcNj4gG7SzehPNP0BpquLfQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1010881113</pqid></control><display><type>article</type><title>Dosimetry of intensive synchrotron microbeams</title><source>ScienceDirect Journals (5 years ago - present)</source><creator>Lerch, M.L.F. ; Petasecca, M. ; Cullen, A. ; Hamad, A. ; Requardt, H. ; Bräuer-Krisch, E. ; Bravin, A. ; Perevertaylo, V.L. ; Rosenfeld, A.B.</creator><creatorcontrib>Lerch, M.L.F. ; Petasecca, M. ; Cullen, A. ; Hamad, A. ; Requardt, H. ; Bräuer-Krisch, E. ; Bravin, A. ; Perevertaylo, V.L. ; Rosenfeld, A.B.</creatorcontrib><description>Intensive synchrotron X-ray microbeams form an integral part of microbeam radiation therapy (MRT). MRT is a novel radiation medicine modality being developed for inoperable and otherwise untreatable brain tumours. The extremely high dose rate (∼20 kGy/s), laterally fractionated radiation field and steep dose gradients utilized in this therapy make real-time dosimetry a significant challenge. In order for this treatment to advance to the clinical trial stage of development real-time dosimetry systems must be developed. This paper demonstrates the capabilities of a new dosimetry system based on an epitaxial silicon detector. The system combines high spatial resolution and real-time readout and we have measured the lateral dose profile of the MRT radiation field which incorporates 59 X-ray microbeams. All microbeam peaks and valley regions between two microbeams are clearly resolved. The measured detector response at any point is reproducible to within 0.5% after scaling for the known synchrotron storage ring beam current lifetime. The variation of the lateral dose profile at different depths in a PMMA phantom has been measured with the results compared to those from Penelope Monte Carlo simulations. The trend in the measured response with depth agrees with the simulation data (within the experimental variation of the central five microbeams peaks and valleys measured). However the measured peak-to-valley ratio response is a factor of 4.5 ± 0.1 times lower than that expected. The disagreement was further investigated and shown to be contributed to by charge recombination effects at the low bias voltages used.
► Real-time dosimetry of synchrotron X-ray microbeams is demonstrated. ► We characterize 59 microbeams as a function of depth in a Perspex phantom. ► Depth dose trend agrees with that calculated using Monte Carlo simulations. ► Suggested optimization of the detector will improve the quantitative agreement.</description><identifier>ISSN: 1350-4487</identifier><identifier>EISSN: 1879-0925</identifier><identifier>DOI: 10.1016/j.radmeas.2011.08.009</identifier><language>eng</language><publisher>Kidlington: Elsevier Ltd</publisher><subject>Computer simulation ; Detectors ; Dosimeters ; Dosimetry ; Earth sciences ; Earth, ocean, space ; Exact sciences and technology ; Geochronology ; Isotope geochemistry. Geochronology ; Microbeam radiation therapy ; Microbeams ; Monte Carlo methods ; Real time ; Real-time dosimetry ; Silicon detector ; Synchrotrons</subject><ispartof>Radiation measurements, 2011-12, Vol.46 (12), p.1560-1565</ispartof><rights>2011</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c405t-e4b83cce6db13253172b4498d6a1ebdeb1ea74b279e28eb35b73b7815cbab8313</citedby><cites>FETCH-LOGICAL-c405t-e4b83cce6db13253172b4498d6a1ebdeb1ea74b279e28eb35b73b7815cbab8313</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.radmeas.2011.08.009$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>309,310,314,780,784,789,790,3548,23929,23930,25139,27923,27924,45994</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=25377108$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Lerch, M.L.F.</creatorcontrib><creatorcontrib>Petasecca, M.</creatorcontrib><creatorcontrib>Cullen, A.</creatorcontrib><creatorcontrib>Hamad, A.</creatorcontrib><creatorcontrib>Requardt, H.</creatorcontrib><creatorcontrib>Bräuer-Krisch, E.</creatorcontrib><creatorcontrib>Bravin, A.</creatorcontrib><creatorcontrib>Perevertaylo, V.L.</creatorcontrib><creatorcontrib>Rosenfeld, A.B.</creatorcontrib><title>Dosimetry of intensive synchrotron microbeams</title><title>Radiation measurements</title><description>Intensive synchrotron X-ray microbeams form an integral part of microbeam radiation therapy (MRT). MRT is a novel radiation medicine modality being developed for inoperable and otherwise untreatable brain tumours. The extremely high dose rate (∼20 kGy/s), laterally fractionated radiation field and steep dose gradients utilized in this therapy make real-time dosimetry a significant challenge. In order for this treatment to advance to the clinical trial stage of development real-time dosimetry systems must be developed. This paper demonstrates the capabilities of a new dosimetry system based on an epitaxial silicon detector. The system combines high spatial resolution and real-time readout and we have measured the lateral dose profile of the MRT radiation field which incorporates 59 X-ray microbeams. All microbeam peaks and valley regions between two microbeams are clearly resolved. The measured detector response at any point is reproducible to within 0.5% after scaling for the known synchrotron storage ring beam current lifetime. The variation of the lateral dose profile at different depths in a PMMA phantom has been measured with the results compared to those from Penelope Monte Carlo simulations. The trend in the measured response with depth agrees with the simulation data (within the experimental variation of the central five microbeams peaks and valleys measured). However the measured peak-to-valley ratio response is a factor of 4.5 ± 0.1 times lower than that expected. The disagreement was further investigated and shown to be contributed to by charge recombination effects at the low bias voltages used.
► Real-time dosimetry of synchrotron X-ray microbeams is demonstrated. ► We characterize 59 microbeams as a function of depth in a Perspex phantom. ► Depth dose trend agrees with that calculated using Monte Carlo simulations. ► Suggested optimization of the detector will improve the quantitative agreement.</description><subject>Computer simulation</subject><subject>Detectors</subject><subject>Dosimeters</subject><subject>Dosimetry</subject><subject>Earth sciences</subject><subject>Earth, ocean, space</subject><subject>Exact sciences and technology</subject><subject>Geochronology</subject><subject>Isotope geochemistry. Geochronology</subject><subject>Microbeam radiation therapy</subject><subject>Microbeams</subject><subject>Monte Carlo methods</subject><subject>Real time</subject><subject>Real-time dosimetry</subject><subject>Silicon detector</subject><subject>Synchrotrons</subject><issn>1350-4487</issn><issn>1879-0925</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNqFkE1LAzEQhoMoWKs_QdiL4GXXzCbZZE8i9RMKXvQckuwspuxHTbaF_ntTWrz2NHN43nmZh5BboAVQqB5WRTBNjyYWJQUoqCoorc_IDJSsc1qX4jztTNCccyUvyVWMK0oprysxI_nzGH2PU9hlY5v5YcIh-i1mcTe4nzBOYRyy3rswWjR9vCYXreki3hznnHy_vnwt3vPl59vH4mmZO07FlCO3ijmHVWOBlYKBLC3ntWoqA2gbtIBGclvKGkuFlgkrmZUKhLMmJYHNyf3h7jqMvxuMk-59dNh1ZsBxEzVIziVUksnTKAWqFACwhIoDmt6JMWCr18H3JuwStOcqvdJHk3pvUlOlk8mUuztWmOhM1wYzOB__w-lBKVNJ4h4PHCY1W49BR-dxcNj4gG7SzehPNP0BpquLfQ</recordid><startdate>20111201</startdate><enddate>20111201</enddate><creator>Lerch, M.L.F.</creator><creator>Petasecca, M.</creator><creator>Cullen, A.</creator><creator>Hamad, A.</creator><creator>Requardt, H.</creator><creator>Bräuer-Krisch, E.</creator><creator>Bravin, A.</creator><creator>Perevertaylo, V.L.</creator><creator>Rosenfeld, A.B.</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QH</scope><scope>7UA</scope><scope>C1K</scope><scope>F1W</scope><scope>H97</scope><scope>L.G</scope><scope>7SR</scope><scope>7SU</scope><scope>7U5</scope><scope>8FD</scope><scope>FR3</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20111201</creationdate><title>Dosimetry of intensive synchrotron microbeams</title><author>Lerch, M.L.F. ; Petasecca, M. ; Cullen, A. ; Hamad, A. ; Requardt, H. ; Bräuer-Krisch, E. ; Bravin, A. ; Perevertaylo, V.L. ; Rosenfeld, A.B.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c405t-e4b83cce6db13253172b4498d6a1ebdeb1ea74b279e28eb35b73b7815cbab8313</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Computer simulation</topic><topic>Detectors</topic><topic>Dosimeters</topic><topic>Dosimetry</topic><topic>Earth sciences</topic><topic>Earth, ocean, space</topic><topic>Exact sciences and technology</topic><topic>Geochronology</topic><topic>Isotope geochemistry. Geochronology</topic><topic>Microbeam radiation therapy</topic><topic>Microbeams</topic><topic>Monte Carlo methods</topic><topic>Real time</topic><topic>Real-time dosimetry</topic><topic>Silicon detector</topic><topic>Synchrotrons</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lerch, M.L.F.</creatorcontrib><creatorcontrib>Petasecca, M.</creatorcontrib><creatorcontrib>Cullen, A.</creatorcontrib><creatorcontrib>Hamad, A.</creatorcontrib><creatorcontrib>Requardt, H.</creatorcontrib><creatorcontrib>Bräuer-Krisch, E.</creatorcontrib><creatorcontrib>Bravin, A.</creatorcontrib><creatorcontrib>Perevertaylo, V.L.</creatorcontrib><creatorcontrib>Rosenfeld, A.B.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Aqualine</collection><collection>Water Resources Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Engineered Materials Abstracts</collection><collection>Environmental Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Radiation measurements</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lerch, M.L.F.</au><au>Petasecca, M.</au><au>Cullen, A.</au><au>Hamad, A.</au><au>Requardt, H.</au><au>Bräuer-Krisch, E.</au><au>Bravin, A.</au><au>Perevertaylo, V.L.</au><au>Rosenfeld, A.B.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dosimetry of intensive synchrotron microbeams</atitle><jtitle>Radiation measurements</jtitle><date>2011-12-01</date><risdate>2011</risdate><volume>46</volume><issue>12</issue><spage>1560</spage><epage>1565</epage><pages>1560-1565</pages><issn>1350-4487</issn><eissn>1879-0925</eissn><abstract>Intensive synchrotron X-ray microbeams form an integral part of microbeam radiation therapy (MRT). MRT is a novel radiation medicine modality being developed for inoperable and otherwise untreatable brain tumours. The extremely high dose rate (∼20 kGy/s), laterally fractionated radiation field and steep dose gradients utilized in this therapy make real-time dosimetry a significant challenge. In order for this treatment to advance to the clinical trial stage of development real-time dosimetry systems must be developed. This paper demonstrates the capabilities of a new dosimetry system based on an epitaxial silicon detector. The system combines high spatial resolution and real-time readout and we have measured the lateral dose profile of the MRT radiation field which incorporates 59 X-ray microbeams. All microbeam peaks and valley regions between two microbeams are clearly resolved. The measured detector response at any point is reproducible to within 0.5% after scaling for the known synchrotron storage ring beam current lifetime. The variation of the lateral dose profile at different depths in a PMMA phantom has been measured with the results compared to those from Penelope Monte Carlo simulations. The trend in the measured response with depth agrees with the simulation data (within the experimental variation of the central five microbeams peaks and valleys measured). However the measured peak-to-valley ratio response is a factor of 4.5 ± 0.1 times lower than that expected. The disagreement was further investigated and shown to be contributed to by charge recombination effects at the low bias voltages used.
► Real-time dosimetry of synchrotron X-ray microbeams is demonstrated. ► We characterize 59 microbeams as a function of depth in a Perspex phantom. ► Depth dose trend agrees with that calculated using Monte Carlo simulations. ► Suggested optimization of the detector will improve the quantitative agreement.</abstract><cop>Kidlington</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.radmeas.2011.08.009</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1350-4487 |
ispartof | Radiation measurements, 2011-12, Vol.46 (12), p.1560-1565 |
issn | 1350-4487 1879-0925 |
language | eng |
recordid | cdi_proquest_miscellaneous_1744716737 |
source | ScienceDirect Journals (5 years ago - present) |
subjects | Computer simulation Detectors Dosimeters Dosimetry Earth sciences Earth, ocean, space Exact sciences and technology Geochronology Isotope geochemistry. Geochronology Microbeam radiation therapy Microbeams Monte Carlo methods Real time Real-time dosimetry Silicon detector Synchrotrons |
title | Dosimetry of intensive synchrotron microbeams |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T13%3A38%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dosimetry%20of%20intensive%20synchrotron%20microbeams&rft.jtitle=Radiation%20measurements&rft.au=Lerch,%20M.L.F.&rft.date=2011-12-01&rft.volume=46&rft.issue=12&rft.spage=1560&rft.epage=1565&rft.pages=1560-1565&rft.issn=1350-4487&rft.eissn=1879-0925&rft_id=info:doi/10.1016/j.radmeas.2011.08.009&rft_dat=%3Cproquest_cross%3E1744716737%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1010881113&rft_id=info:pmid/&rft_els_id=S1350448711004215&rfr_iscdi=true |