Dosimetry of intensive synchrotron microbeams

Intensive synchrotron X-ray microbeams form an integral part of microbeam radiation therapy (MRT). MRT is a novel radiation medicine modality being developed for inoperable and otherwise untreatable brain tumours. The extremely high dose rate (∼20 kGy/s), laterally fractionated radiation field and s...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Radiation measurements 2011-12, Vol.46 (12), p.1560-1565
Hauptverfasser: Lerch, M.L.F., Petasecca, M., Cullen, A., Hamad, A., Requardt, H., Bräuer-Krisch, E., Bravin, A., Perevertaylo, V.L., Rosenfeld, A.B.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1565
container_issue 12
container_start_page 1560
container_title Radiation measurements
container_volume 46
creator Lerch, M.L.F.
Petasecca, M.
Cullen, A.
Hamad, A.
Requardt, H.
Bräuer-Krisch, E.
Bravin, A.
Perevertaylo, V.L.
Rosenfeld, A.B.
description Intensive synchrotron X-ray microbeams form an integral part of microbeam radiation therapy (MRT). MRT is a novel radiation medicine modality being developed for inoperable and otherwise untreatable brain tumours. The extremely high dose rate (∼20 kGy/s), laterally fractionated radiation field and steep dose gradients utilized in this therapy make real-time dosimetry a significant challenge. In order for this treatment to advance to the clinical trial stage of development real-time dosimetry systems must be developed. This paper demonstrates the capabilities of a new dosimetry system based on an epitaxial silicon detector. The system combines high spatial resolution and real-time readout and we have measured the lateral dose profile of the MRT radiation field which incorporates 59 X-ray microbeams. All microbeam peaks and valley regions between two microbeams are clearly resolved. The measured detector response at any point is reproducible to within 0.5% after scaling for the known synchrotron storage ring beam current lifetime. The variation of the lateral dose profile at different depths in a PMMA phantom has been measured with the results compared to those from Penelope Monte Carlo simulations. The trend in the measured response with depth agrees with the simulation data (within the experimental variation of the central five microbeams peaks and valleys measured). However the measured peak-to-valley ratio response is a factor of 4.5 ± 0.1 times lower than that expected. The disagreement was further investigated and shown to be contributed to by charge recombination effects at the low bias voltages used. ► Real-time dosimetry of synchrotron X-ray microbeams is demonstrated. ► We characterize 59 microbeams as a function of depth in a Perspex phantom. ► Depth dose trend agrees with that calculated using Monte Carlo simulations. ► Suggested optimization of the detector will improve the quantitative agreement.
doi_str_mv 10.1016/j.radmeas.2011.08.009
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1744716737</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1350448711004215</els_id><sourcerecordid>1744716737</sourcerecordid><originalsourceid>FETCH-LOGICAL-c405t-e4b83cce6db13253172b4498d6a1ebdeb1ea74b279e28eb35b73b7815cbab8313</originalsourceid><addsrcrecordid>eNqFkE1LAzEQhoMoWKs_QdiL4GXXzCbZZE8i9RMKXvQckuwspuxHTbaF_ntTWrz2NHN43nmZh5BboAVQqB5WRTBNjyYWJQUoqCoorc_IDJSsc1qX4jztTNCccyUvyVWMK0oprysxI_nzGH2PU9hlY5v5YcIh-i1mcTe4nzBOYRyy3rswWjR9vCYXreki3hznnHy_vnwt3vPl59vH4mmZO07FlCO3ijmHVWOBlYKBLC3ntWoqA2gbtIBGclvKGkuFlgkrmZUKhLMmJYHNyf3h7jqMvxuMk-59dNh1ZsBxEzVIziVUksnTKAWqFACwhIoDmt6JMWCr18H3JuwStOcqvdJHk3pvUlOlk8mUuztWmOhM1wYzOB__w-lBKVNJ4h4PHCY1W49BR-dxcNj4gG7SzehPNP0BpquLfQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1010881113</pqid></control><display><type>article</type><title>Dosimetry of intensive synchrotron microbeams</title><source>ScienceDirect Journals (5 years ago - present)</source><creator>Lerch, M.L.F. ; Petasecca, M. ; Cullen, A. ; Hamad, A. ; Requardt, H. ; Bräuer-Krisch, E. ; Bravin, A. ; Perevertaylo, V.L. ; Rosenfeld, A.B.</creator><creatorcontrib>Lerch, M.L.F. ; Petasecca, M. ; Cullen, A. ; Hamad, A. ; Requardt, H. ; Bräuer-Krisch, E. ; Bravin, A. ; Perevertaylo, V.L. ; Rosenfeld, A.B.</creatorcontrib><description>Intensive synchrotron X-ray microbeams form an integral part of microbeam radiation therapy (MRT). MRT is a novel radiation medicine modality being developed for inoperable and otherwise untreatable brain tumours. The extremely high dose rate (∼20 kGy/s), laterally fractionated radiation field and steep dose gradients utilized in this therapy make real-time dosimetry a significant challenge. In order for this treatment to advance to the clinical trial stage of development real-time dosimetry systems must be developed. This paper demonstrates the capabilities of a new dosimetry system based on an epitaxial silicon detector. The system combines high spatial resolution and real-time readout and we have measured the lateral dose profile of the MRT radiation field which incorporates 59 X-ray microbeams. All microbeam peaks and valley regions between two microbeams are clearly resolved. The measured detector response at any point is reproducible to within 0.5% after scaling for the known synchrotron storage ring beam current lifetime. The variation of the lateral dose profile at different depths in a PMMA phantom has been measured with the results compared to those from Penelope Monte Carlo simulations. The trend in the measured response with depth agrees with the simulation data (within the experimental variation of the central five microbeams peaks and valleys measured). However the measured peak-to-valley ratio response is a factor of 4.5 ± 0.1 times lower than that expected. The disagreement was further investigated and shown to be contributed to by charge recombination effects at the low bias voltages used. ► Real-time dosimetry of synchrotron X-ray microbeams is demonstrated. ► We characterize 59 microbeams as a function of depth in a Perspex phantom. ► Depth dose trend agrees with that calculated using Monte Carlo simulations. ► Suggested optimization of the detector will improve the quantitative agreement.</description><identifier>ISSN: 1350-4487</identifier><identifier>EISSN: 1879-0925</identifier><identifier>DOI: 10.1016/j.radmeas.2011.08.009</identifier><language>eng</language><publisher>Kidlington: Elsevier Ltd</publisher><subject>Computer simulation ; Detectors ; Dosimeters ; Dosimetry ; Earth sciences ; Earth, ocean, space ; Exact sciences and technology ; Geochronology ; Isotope geochemistry. Geochronology ; Microbeam radiation therapy ; Microbeams ; Monte Carlo methods ; Real time ; Real-time dosimetry ; Silicon detector ; Synchrotrons</subject><ispartof>Radiation measurements, 2011-12, Vol.46 (12), p.1560-1565</ispartof><rights>2011</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c405t-e4b83cce6db13253172b4498d6a1ebdeb1ea74b279e28eb35b73b7815cbab8313</citedby><cites>FETCH-LOGICAL-c405t-e4b83cce6db13253172b4498d6a1ebdeb1ea74b279e28eb35b73b7815cbab8313</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.radmeas.2011.08.009$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>309,310,314,780,784,789,790,3548,23929,23930,25139,27923,27924,45994</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=25377108$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Lerch, M.L.F.</creatorcontrib><creatorcontrib>Petasecca, M.</creatorcontrib><creatorcontrib>Cullen, A.</creatorcontrib><creatorcontrib>Hamad, A.</creatorcontrib><creatorcontrib>Requardt, H.</creatorcontrib><creatorcontrib>Bräuer-Krisch, E.</creatorcontrib><creatorcontrib>Bravin, A.</creatorcontrib><creatorcontrib>Perevertaylo, V.L.</creatorcontrib><creatorcontrib>Rosenfeld, A.B.</creatorcontrib><title>Dosimetry of intensive synchrotron microbeams</title><title>Radiation measurements</title><description>Intensive synchrotron X-ray microbeams form an integral part of microbeam radiation therapy (MRT). MRT is a novel radiation medicine modality being developed for inoperable and otherwise untreatable brain tumours. The extremely high dose rate (∼20 kGy/s), laterally fractionated radiation field and steep dose gradients utilized in this therapy make real-time dosimetry a significant challenge. In order for this treatment to advance to the clinical trial stage of development real-time dosimetry systems must be developed. This paper demonstrates the capabilities of a new dosimetry system based on an epitaxial silicon detector. The system combines high spatial resolution and real-time readout and we have measured the lateral dose profile of the MRT radiation field which incorporates 59 X-ray microbeams. All microbeam peaks and valley regions between two microbeams are clearly resolved. The measured detector response at any point is reproducible to within 0.5% after scaling for the known synchrotron storage ring beam current lifetime. The variation of the lateral dose profile at different depths in a PMMA phantom has been measured with the results compared to those from Penelope Monte Carlo simulations. The trend in the measured response with depth agrees with the simulation data (within the experimental variation of the central five microbeams peaks and valleys measured). However the measured peak-to-valley ratio response is a factor of 4.5 ± 0.1 times lower than that expected. The disagreement was further investigated and shown to be contributed to by charge recombination effects at the low bias voltages used. ► Real-time dosimetry of synchrotron X-ray microbeams is demonstrated. ► We characterize 59 microbeams as a function of depth in a Perspex phantom. ► Depth dose trend agrees with that calculated using Monte Carlo simulations. ► Suggested optimization of the detector will improve the quantitative agreement.</description><subject>Computer simulation</subject><subject>Detectors</subject><subject>Dosimeters</subject><subject>Dosimetry</subject><subject>Earth sciences</subject><subject>Earth, ocean, space</subject><subject>Exact sciences and technology</subject><subject>Geochronology</subject><subject>Isotope geochemistry. Geochronology</subject><subject>Microbeam radiation therapy</subject><subject>Microbeams</subject><subject>Monte Carlo methods</subject><subject>Real time</subject><subject>Real-time dosimetry</subject><subject>Silicon detector</subject><subject>Synchrotrons</subject><issn>1350-4487</issn><issn>1879-0925</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNqFkE1LAzEQhoMoWKs_QdiL4GXXzCbZZE8i9RMKXvQckuwspuxHTbaF_ntTWrz2NHN43nmZh5BboAVQqB5WRTBNjyYWJQUoqCoorc_IDJSsc1qX4jztTNCccyUvyVWMK0oprysxI_nzGH2PU9hlY5v5YcIh-i1mcTe4nzBOYRyy3rswWjR9vCYXreki3hznnHy_vnwt3vPl59vH4mmZO07FlCO3ijmHVWOBlYKBLC3ntWoqA2gbtIBGclvKGkuFlgkrmZUKhLMmJYHNyf3h7jqMvxuMk-59dNh1ZsBxEzVIziVUksnTKAWqFACwhIoDmt6JMWCr18H3JuwStOcqvdJHk3pvUlOlk8mUuztWmOhM1wYzOB__w-lBKVNJ4h4PHCY1W49BR-dxcNj4gG7SzehPNP0BpquLfQ</recordid><startdate>20111201</startdate><enddate>20111201</enddate><creator>Lerch, M.L.F.</creator><creator>Petasecca, M.</creator><creator>Cullen, A.</creator><creator>Hamad, A.</creator><creator>Requardt, H.</creator><creator>Bräuer-Krisch, E.</creator><creator>Bravin, A.</creator><creator>Perevertaylo, V.L.</creator><creator>Rosenfeld, A.B.</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QH</scope><scope>7UA</scope><scope>C1K</scope><scope>F1W</scope><scope>H97</scope><scope>L.G</scope><scope>7SR</scope><scope>7SU</scope><scope>7U5</scope><scope>8FD</scope><scope>FR3</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20111201</creationdate><title>Dosimetry of intensive synchrotron microbeams</title><author>Lerch, M.L.F. ; Petasecca, M. ; Cullen, A. ; Hamad, A. ; Requardt, H. ; Bräuer-Krisch, E. ; Bravin, A. ; Perevertaylo, V.L. ; Rosenfeld, A.B.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c405t-e4b83cce6db13253172b4498d6a1ebdeb1ea74b279e28eb35b73b7815cbab8313</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Computer simulation</topic><topic>Detectors</topic><topic>Dosimeters</topic><topic>Dosimetry</topic><topic>Earth sciences</topic><topic>Earth, ocean, space</topic><topic>Exact sciences and technology</topic><topic>Geochronology</topic><topic>Isotope geochemistry. Geochronology</topic><topic>Microbeam radiation therapy</topic><topic>Microbeams</topic><topic>Monte Carlo methods</topic><topic>Real time</topic><topic>Real-time dosimetry</topic><topic>Silicon detector</topic><topic>Synchrotrons</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lerch, M.L.F.</creatorcontrib><creatorcontrib>Petasecca, M.</creatorcontrib><creatorcontrib>Cullen, A.</creatorcontrib><creatorcontrib>Hamad, A.</creatorcontrib><creatorcontrib>Requardt, H.</creatorcontrib><creatorcontrib>Bräuer-Krisch, E.</creatorcontrib><creatorcontrib>Bravin, A.</creatorcontrib><creatorcontrib>Perevertaylo, V.L.</creatorcontrib><creatorcontrib>Rosenfeld, A.B.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Aqualine</collection><collection>Water Resources Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 3: Aquatic Pollution &amp; Environmental Quality</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Engineered Materials Abstracts</collection><collection>Environmental Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Radiation measurements</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lerch, M.L.F.</au><au>Petasecca, M.</au><au>Cullen, A.</au><au>Hamad, A.</au><au>Requardt, H.</au><au>Bräuer-Krisch, E.</au><au>Bravin, A.</au><au>Perevertaylo, V.L.</au><au>Rosenfeld, A.B.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dosimetry of intensive synchrotron microbeams</atitle><jtitle>Radiation measurements</jtitle><date>2011-12-01</date><risdate>2011</risdate><volume>46</volume><issue>12</issue><spage>1560</spage><epage>1565</epage><pages>1560-1565</pages><issn>1350-4487</issn><eissn>1879-0925</eissn><abstract>Intensive synchrotron X-ray microbeams form an integral part of microbeam radiation therapy (MRT). MRT is a novel radiation medicine modality being developed for inoperable and otherwise untreatable brain tumours. The extremely high dose rate (∼20 kGy/s), laterally fractionated radiation field and steep dose gradients utilized in this therapy make real-time dosimetry a significant challenge. In order for this treatment to advance to the clinical trial stage of development real-time dosimetry systems must be developed. This paper demonstrates the capabilities of a new dosimetry system based on an epitaxial silicon detector. The system combines high spatial resolution and real-time readout and we have measured the lateral dose profile of the MRT radiation field which incorporates 59 X-ray microbeams. All microbeam peaks and valley regions between two microbeams are clearly resolved. The measured detector response at any point is reproducible to within 0.5% after scaling for the known synchrotron storage ring beam current lifetime. The variation of the lateral dose profile at different depths in a PMMA phantom has been measured with the results compared to those from Penelope Monte Carlo simulations. The trend in the measured response with depth agrees with the simulation data (within the experimental variation of the central five microbeams peaks and valleys measured). However the measured peak-to-valley ratio response is a factor of 4.5 ± 0.1 times lower than that expected. The disagreement was further investigated and shown to be contributed to by charge recombination effects at the low bias voltages used. ► Real-time dosimetry of synchrotron X-ray microbeams is demonstrated. ► We characterize 59 microbeams as a function of depth in a Perspex phantom. ► Depth dose trend agrees with that calculated using Monte Carlo simulations. ► Suggested optimization of the detector will improve the quantitative agreement.</abstract><cop>Kidlington</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.radmeas.2011.08.009</doi><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1350-4487
ispartof Radiation measurements, 2011-12, Vol.46 (12), p.1560-1565
issn 1350-4487
1879-0925
language eng
recordid cdi_proquest_miscellaneous_1744716737
source ScienceDirect Journals (5 years ago - present)
subjects Computer simulation
Detectors
Dosimeters
Dosimetry
Earth sciences
Earth, ocean, space
Exact sciences and technology
Geochronology
Isotope geochemistry. Geochronology
Microbeam radiation therapy
Microbeams
Monte Carlo methods
Real time
Real-time dosimetry
Silicon detector
Synchrotrons
title Dosimetry of intensive synchrotron microbeams
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T13%3A38%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dosimetry%20of%20intensive%20synchrotron%20microbeams&rft.jtitle=Radiation%20measurements&rft.au=Lerch,%20M.L.F.&rft.date=2011-12-01&rft.volume=46&rft.issue=12&rft.spage=1560&rft.epage=1565&rft.pages=1560-1565&rft.issn=1350-4487&rft.eissn=1879-0925&rft_id=info:doi/10.1016/j.radmeas.2011.08.009&rft_dat=%3Cproquest_cross%3E1744716737%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1010881113&rft_id=info:pmid/&rft_els_id=S1350448711004215&rfr_iscdi=true