Approximations of the operator exponential in a periodic diffusion problem with drift
A Cauchy problem for a parabolic diffusion equation with 1-periodic coefficients containing first order terms is studied. For the corresponding semigroup we construct approximations in the -operator norm on sections of order as for or . The spectral method based on the Bloch representation of an ope...
Gespeichert in:
Veröffentlicht in: | Sbornik. Mathematics 2013-01, Vol.204 (2), p.280-306 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 306 |
---|---|
container_issue | 2 |
container_start_page | 280 |
container_title | Sbornik. Mathematics |
container_volume | 204 |
creator | Pastukhova, S. E. |
description | A Cauchy problem for a parabolic diffusion equation with 1-periodic coefficients containing first order terms is studied. For the corresponding semigroup we construct approximations in the -operator norm on sections of order as for or . The spectral method based on the Bloch representation of an operator with periodic coefficients is used. Bibliography: 25 titles. |
doi_str_mv | 10.1070/SM2013v204n02ABEH004301 |
format | Article |
fullrecord | <record><control><sourceid>proquest_iop_j</sourceid><recordid>TN_cdi_proquest_miscellaneous_1744714426</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1744714426</sourcerecordid><originalsourceid>FETCH-LOGICAL-c392t-3ba5b1664f327fcb41d40c45f7718a8d32cf9e67f20bb777a7afe4a79f62a04d3</originalsourceid><addsrcrecordid>eNqNkEtLAzEQxxdRsD4-gwERvKxOHptsj7X4gooH9Ryy2YSmbJM1SX18eyP1qOBpBub3G2b-VXWC4QKDgMunBwKYvhFgHsjs6voOgFHAO9UEM97WrAWyW3rgrG445vvVQUorAGgIbifVy2wcY_hwa5Vd8AkFi_LSoDCaqHKIyHyMwRufnRqQ80ihMnChdxr1ztpNKhIqC7rBrNG7y0vUR2fzUbVn1ZDM8U89rF5urp_nd_Xi8fZ-PlvUmk5Jrmmnmg5zziwlwuqO4Z6BZo0VAreq7SnRdmq4sAS6TgihhLKGKTG1nChgPT2sTrd7Q8pOJu2y0UsdvDc6S0Jww5uGFep8S5VDXzcmZbl2SZthUN6ETZJYMCYwY4QXVGxRHUNK0Vg5xpJN_JQY5Hfc8o-4i0m3pgujXIVN9OXxf1hnv1gPT1eyoJJI0oIce0u_ANh_j_U</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1744714426</pqid></control><display><type>article</type><title>Approximations of the operator exponential in a periodic diffusion problem with drift</title><source>IOP Publishing Journals</source><source>Alma/SFX Local Collection</source><creator>Pastukhova, S. E.</creator><creatorcontrib>Pastukhova, S. E.</creatorcontrib><description>A Cauchy problem for a parabolic diffusion equation with 1-periodic coefficients containing first order terms is studied. For the corresponding semigroup we construct approximations in the -operator norm on sections of order as for or . The spectral method based on the Bloch representation of an operator with periodic coefficients is used. Bibliography: 25 titles.</description><identifier>ISSN: 1064-5616</identifier><identifier>EISSN: 1468-4802</identifier><identifier>DOI: 10.1070/SM2013v204n02ABEH004301</identifier><language>eng</language><publisher>United States: London Mathematical Society, Turpion Ltd and the Russian Academy of Sciences</publisher><subject>Approximation ; APPROXIMATIONS ; Bloch decomposition of functions ; CAUCHY PROBLEM ; Diffusion ; DIFFUSION EQUATIONS ; diffusion with drift ; homogenization ; Infinity ; Mathematical analysis ; MATHEMATICAL METHODS AND COMPUTING ; Norms ; operator exponential ; PARABOLAS ; PERIODICITY ; Representations ; spectral method ; Spectral methods</subject><ispartof>Sbornik. Mathematics, 2013-01, Vol.204 (2), p.280-306</ispartof><rights>2013 RAS(DoM) and LMS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c392t-3ba5b1664f327fcb41d40c45f7718a8d32cf9e67f20bb777a7afe4a79f62a04d3</citedby><cites>FETCH-LOGICAL-c392t-3ba5b1664f327fcb41d40c45f7718a8d32cf9e67f20bb777a7afe4a79f62a04d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1070/SM2013v204n02ABEH004301/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>230,314,776,780,881,27901,27902,53821</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/22156554$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Pastukhova, S. E.</creatorcontrib><title>Approximations of the operator exponential in a periodic diffusion problem with drift</title><title>Sbornik. Mathematics</title><addtitle>MSB</addtitle><addtitle>Sb. Math</addtitle><description>A Cauchy problem for a parabolic diffusion equation with 1-periodic coefficients containing first order terms is studied. For the corresponding semigroup we construct approximations in the -operator norm on sections of order as for or . The spectral method based on the Bloch representation of an operator with periodic coefficients is used. Bibliography: 25 titles.</description><subject>Approximation</subject><subject>APPROXIMATIONS</subject><subject>Bloch decomposition of functions</subject><subject>CAUCHY PROBLEM</subject><subject>Diffusion</subject><subject>DIFFUSION EQUATIONS</subject><subject>diffusion with drift</subject><subject>homogenization</subject><subject>Infinity</subject><subject>Mathematical analysis</subject><subject>MATHEMATICAL METHODS AND COMPUTING</subject><subject>Norms</subject><subject>operator exponential</subject><subject>PARABOLAS</subject><subject>PERIODICITY</subject><subject>Representations</subject><subject>spectral method</subject><subject>Spectral methods</subject><issn>1064-5616</issn><issn>1468-4802</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNqNkEtLAzEQxxdRsD4-gwERvKxOHptsj7X4gooH9Ryy2YSmbJM1SX18eyP1qOBpBub3G2b-VXWC4QKDgMunBwKYvhFgHsjs6voOgFHAO9UEM97WrAWyW3rgrG445vvVQUorAGgIbifVy2wcY_hwa5Vd8AkFi_LSoDCaqHKIyHyMwRufnRqQ80ihMnChdxr1ztpNKhIqC7rBrNG7y0vUR2fzUbVn1ZDM8U89rF5urp_nd_Xi8fZ-PlvUmk5Jrmmnmg5zziwlwuqO4Z6BZo0VAreq7SnRdmq4sAS6TgihhLKGKTG1nChgPT2sTrd7Q8pOJu2y0UsdvDc6S0Jww5uGFep8S5VDXzcmZbl2SZthUN6ETZJYMCYwY4QXVGxRHUNK0Vg5xpJN_JQY5Hfc8o-4i0m3pgujXIVN9OXxf1hnv1gPT1eyoJJI0oIce0u_ANh_j_U</recordid><startdate>20130101</startdate><enddate>20130101</enddate><creator>Pastukhova, S. E.</creator><general>London Mathematical Society, Turpion Ltd and the Russian Academy of Sciences</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>7U5</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>KR7</scope><scope>L7M</scope><scope>OTOTI</scope></search><sort><creationdate>20130101</creationdate><title>Approximations of the operator exponential in a periodic diffusion problem with drift</title><author>Pastukhova, S. E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c392t-3ba5b1664f327fcb41d40c45f7718a8d32cf9e67f20bb777a7afe4a79f62a04d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Approximation</topic><topic>APPROXIMATIONS</topic><topic>Bloch decomposition of functions</topic><topic>CAUCHY PROBLEM</topic><topic>Diffusion</topic><topic>DIFFUSION EQUATIONS</topic><topic>diffusion with drift</topic><topic>homogenization</topic><topic>Infinity</topic><topic>Mathematical analysis</topic><topic>MATHEMATICAL METHODS AND COMPUTING</topic><topic>Norms</topic><topic>operator exponential</topic><topic>PARABOLAS</topic><topic>PERIODICITY</topic><topic>Representations</topic><topic>spectral method</topic><topic>Spectral methods</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pastukhova, S. E.</creatorcontrib><collection>CrossRef</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>OSTI.GOV</collection><jtitle>Sbornik. Mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pastukhova, S. E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Approximations of the operator exponential in a periodic diffusion problem with drift</atitle><jtitle>Sbornik. Mathematics</jtitle><stitle>MSB</stitle><addtitle>Sb. Math</addtitle><date>2013-01-01</date><risdate>2013</risdate><volume>204</volume><issue>2</issue><spage>280</spage><epage>306</epage><pages>280-306</pages><issn>1064-5616</issn><eissn>1468-4802</eissn><abstract>A Cauchy problem for a parabolic diffusion equation with 1-periodic coefficients containing first order terms is studied. For the corresponding semigroup we construct approximations in the -operator norm on sections of order as for or . The spectral method based on the Bloch representation of an operator with periodic coefficients is used. Bibliography: 25 titles.</abstract><cop>United States</cop><pub>London Mathematical Society, Turpion Ltd and the Russian Academy of Sciences</pub><doi>10.1070/SM2013v204n02ABEH004301</doi><tpages>27</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1064-5616 |
ispartof | Sbornik. Mathematics, 2013-01, Vol.204 (2), p.280-306 |
issn | 1064-5616 1468-4802 |
language | eng |
recordid | cdi_proquest_miscellaneous_1744714426 |
source | IOP Publishing Journals; Alma/SFX Local Collection |
subjects | Approximation APPROXIMATIONS Bloch decomposition of functions CAUCHY PROBLEM Diffusion DIFFUSION EQUATIONS diffusion with drift homogenization Infinity Mathematical analysis MATHEMATICAL METHODS AND COMPUTING Norms operator exponential PARABOLAS PERIODICITY Representations spectral method Spectral methods |
title | Approximations of the operator exponential in a periodic diffusion problem with drift |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T09%3A26%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_iop_j&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Approximations%20of%20the%20operator%20exponential%20in%20a%20periodic%20diffusion%20problem%20with%20drift&rft.jtitle=Sbornik.%20Mathematics&rft.au=Pastukhova,%20S.%20E.&rft.date=2013-01-01&rft.volume=204&rft.issue=2&rft.spage=280&rft.epage=306&rft.pages=280-306&rft.issn=1064-5616&rft.eissn=1468-4802&rft_id=info:doi/10.1070/SM2013v204n02ABEH004301&rft_dat=%3Cproquest_iop_j%3E1744714426%3C/proquest_iop_j%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1744714426&rft_id=info:pmid/&rfr_iscdi=true |