Data-Driven Simulation and Optimization Approaches To Incorporate Production Variability in Sales and Operations Planning

We propose two data-driven, optimization-based frameworks (simulation-optimization and bi-objective optimization) to account for production variability in the operations planning stage of the sales and operations planning (S&OP) of an enterprise. Production variability is measured as the deviati...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Industrial & engineering chemistry research 2015-07, Vol.54 (29), p.7261-7272
Hauptverfasser: Calfa, Bruno A, Agarwal, Anshul, Bury, Scott J, Wassick, John M, Grossmann, Ignacio E
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 7272
container_issue 29
container_start_page 7261
container_title Industrial & engineering chemistry research
container_volume 54
creator Calfa, Bruno A
Agarwal, Anshul
Bury, Scott J
Wassick, John M
Grossmann, Ignacio E
description We propose two data-driven, optimization-based frameworks (simulation-optimization and bi-objective optimization) to account for production variability in the operations planning stage of the sales and operations planning (S&OP) of an enterprise. Production variability is measured as the deviation between historical planned (target) and actual (achieved) production rates. A statistical technique, namely, quantile regression, is used to model the distribution of deviation values given planned production rates. Scenarios are constructed by sampling from the distribution of deviation values and used as inputs to the proposed optimization-based frameworks. Advantages and disadvantages of the two proposed frameworks are discussed. The applicability of the proposed methodology is illustrated with a detailed analysis of the results of a motivating example and a real-world production planning problem from a chemical company.
doi_str_mv 10.1021/acs.iecr.5b01273
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1744713486</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1744713486</sourcerecordid><originalsourceid>FETCH-LOGICAL-a350t-35a783af2913acef97e59e3ff8e2150504f1553fcea8199cf28e383646fc74e13</originalsourceid><addsrcrecordid>eNp1kL1PwzAQxS0EEqWwM3pkIMWO48YZq5aPSpVaicIaXd0zuErjYCdI5a_HJV2ZTrr7vad7j5BbzkacpfwBdBhZ1H4kN4ynuTgjAy5TlkiWyXMyYEqpRColL8lVCDvGmJRZNiCHGbSQzLz9xpq-2n1XQWtdTaHe0mXT2r396ReTpvEO9CcGunZ0XmvnG-ehRbrybtvpP-gdvIWNrWx7oDb6QRXx3gr9n0-gqwrq2tYf1-TCQBXw5jSH5O3pcT19SRbL5_l0skhASNYmQkKuBJi04AI0miJHWaAwRmHKJYvxDJdSGI2geFFokyoUSoyzsdF5hlwMyV3vG___6jC05d4GjVV8A10XSp5nWc5FpsYRZT2qvQvBoykbb_fgDyVn5bHlMrZcHlsuTy1HyX0vOV52rvN1zPI__gtjpYLN</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1744713486</pqid></control><display><type>article</type><title>Data-Driven Simulation and Optimization Approaches To Incorporate Production Variability in Sales and Operations Planning</title><source>ACS Publications</source><creator>Calfa, Bruno A ; Agarwal, Anshul ; Bury, Scott J ; Wassick, John M ; Grossmann, Ignacio E</creator><creatorcontrib>Calfa, Bruno A ; Agarwal, Anshul ; Bury, Scott J ; Wassick, John M ; Grossmann, Ignacio E</creatorcontrib><description>We propose two data-driven, optimization-based frameworks (simulation-optimization and bi-objective optimization) to account for production variability in the operations planning stage of the sales and operations planning (S&amp;OP) of an enterprise. Production variability is measured as the deviation between historical planned (target) and actual (achieved) production rates. A statistical technique, namely, quantile regression, is used to model the distribution of deviation values given planned production rates. Scenarios are constructed by sampling from the distribution of deviation values and used as inputs to the proposed optimization-based frameworks. Advantages and disadvantages of the two proposed frameworks are discussed. The applicability of the proposed methodology is illustrated with a detailed analysis of the results of a motivating example and a real-world production planning problem from a chemical company.</description><identifier>ISSN: 0888-5885</identifier><identifier>EISSN: 1520-5045</identifier><identifier>DOI: 10.1021/acs.iecr.5b01273</identifier><language>eng</language><publisher>American Chemical Society</publisher><subject>Deviation ; Historic ; Optimization ; Production planning ; Quantiles ; Regression ; Sales and operations planning ; Sampling</subject><ispartof>Industrial &amp; engineering chemistry research, 2015-07, Vol.54 (29), p.7261-7272</ispartof><rights>Copyright © American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a350t-35a783af2913acef97e59e3ff8e2150504f1553fcea8199cf28e383646fc74e13</citedby><cites>FETCH-LOGICAL-a350t-35a783af2913acef97e59e3ff8e2150504f1553fcea8199cf28e383646fc74e13</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.iecr.5b01273$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.iecr.5b01273$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2751,27055,27903,27904,56716,56766</link.rule.ids></links><search><creatorcontrib>Calfa, Bruno A</creatorcontrib><creatorcontrib>Agarwal, Anshul</creatorcontrib><creatorcontrib>Bury, Scott J</creatorcontrib><creatorcontrib>Wassick, John M</creatorcontrib><creatorcontrib>Grossmann, Ignacio E</creatorcontrib><title>Data-Driven Simulation and Optimization Approaches To Incorporate Production Variability in Sales and Operations Planning</title><title>Industrial &amp; engineering chemistry research</title><addtitle>Ind. Eng. Chem. Res</addtitle><description>We propose two data-driven, optimization-based frameworks (simulation-optimization and bi-objective optimization) to account for production variability in the operations planning stage of the sales and operations planning (S&amp;OP) of an enterprise. Production variability is measured as the deviation between historical planned (target) and actual (achieved) production rates. A statistical technique, namely, quantile regression, is used to model the distribution of deviation values given planned production rates. Scenarios are constructed by sampling from the distribution of deviation values and used as inputs to the proposed optimization-based frameworks. Advantages and disadvantages of the two proposed frameworks are discussed. The applicability of the proposed methodology is illustrated with a detailed analysis of the results of a motivating example and a real-world production planning problem from a chemical company.</description><subject>Deviation</subject><subject>Historic</subject><subject>Optimization</subject><subject>Production planning</subject><subject>Quantiles</subject><subject>Regression</subject><subject>Sales and operations planning</subject><subject>Sampling</subject><issn>0888-5885</issn><issn>1520-5045</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNp1kL1PwzAQxS0EEqWwM3pkIMWO48YZq5aPSpVaicIaXd0zuErjYCdI5a_HJV2ZTrr7vad7j5BbzkacpfwBdBhZ1H4kN4ynuTgjAy5TlkiWyXMyYEqpRColL8lVCDvGmJRZNiCHGbSQzLz9xpq-2n1XQWtdTaHe0mXT2r396ReTpvEO9CcGunZ0XmvnG-ehRbrybtvpP-gdvIWNrWx7oDb6QRXx3gr9n0-gqwrq2tYf1-TCQBXw5jSH5O3pcT19SRbL5_l0skhASNYmQkKuBJi04AI0miJHWaAwRmHKJYvxDJdSGI2geFFokyoUSoyzsdF5hlwMyV3vG___6jC05d4GjVV8A10XSp5nWc5FpsYRZT2qvQvBoykbb_fgDyVn5bHlMrZcHlsuTy1HyX0vOV52rvN1zPI__gtjpYLN</recordid><startdate>20150729</startdate><enddate>20150729</enddate><creator>Calfa, Bruno A</creator><creator>Agarwal, Anshul</creator><creator>Bury, Scott J</creator><creator>Wassick, John M</creator><creator>Grossmann, Ignacio E</creator><general>American Chemical Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>20150729</creationdate><title>Data-Driven Simulation and Optimization Approaches To Incorporate Production Variability in Sales and Operations Planning</title><author>Calfa, Bruno A ; Agarwal, Anshul ; Bury, Scott J ; Wassick, John M ; Grossmann, Ignacio E</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a350t-35a783af2913acef97e59e3ff8e2150504f1553fcea8199cf28e383646fc74e13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Deviation</topic><topic>Historic</topic><topic>Optimization</topic><topic>Production planning</topic><topic>Quantiles</topic><topic>Regression</topic><topic>Sales and operations planning</topic><topic>Sampling</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Calfa, Bruno A</creatorcontrib><creatorcontrib>Agarwal, Anshul</creatorcontrib><creatorcontrib>Bury, Scott J</creatorcontrib><creatorcontrib>Wassick, John M</creatorcontrib><creatorcontrib>Grossmann, Ignacio E</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Industrial &amp; engineering chemistry research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Calfa, Bruno A</au><au>Agarwal, Anshul</au><au>Bury, Scott J</au><au>Wassick, John M</au><au>Grossmann, Ignacio E</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Data-Driven Simulation and Optimization Approaches To Incorporate Production Variability in Sales and Operations Planning</atitle><jtitle>Industrial &amp; engineering chemistry research</jtitle><addtitle>Ind. Eng. Chem. Res</addtitle><date>2015-07-29</date><risdate>2015</risdate><volume>54</volume><issue>29</issue><spage>7261</spage><epage>7272</epage><pages>7261-7272</pages><issn>0888-5885</issn><eissn>1520-5045</eissn><abstract>We propose two data-driven, optimization-based frameworks (simulation-optimization and bi-objective optimization) to account for production variability in the operations planning stage of the sales and operations planning (S&amp;OP) of an enterprise. Production variability is measured as the deviation between historical planned (target) and actual (achieved) production rates. A statistical technique, namely, quantile regression, is used to model the distribution of deviation values given planned production rates. Scenarios are constructed by sampling from the distribution of deviation values and used as inputs to the proposed optimization-based frameworks. Advantages and disadvantages of the two proposed frameworks are discussed. The applicability of the proposed methodology is illustrated with a detailed analysis of the results of a motivating example and a real-world production planning problem from a chemical company.</abstract><pub>American Chemical Society</pub><doi>10.1021/acs.iecr.5b01273</doi><tpages>12</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0888-5885
ispartof Industrial & engineering chemistry research, 2015-07, Vol.54 (29), p.7261-7272
issn 0888-5885
1520-5045
language eng
recordid cdi_proquest_miscellaneous_1744713486
source ACS Publications
subjects Deviation
Historic
Optimization
Production planning
Quantiles
Regression
Sales and operations planning
Sampling
title Data-Driven Simulation and Optimization Approaches To Incorporate Production Variability in Sales and Operations Planning
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T16%3A35%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Data-Driven%20Simulation%20and%20Optimization%20Approaches%20To%20Incorporate%20Production%20Variability%20in%20Sales%20and%20Operations%20Planning&rft.jtitle=Industrial%20&%20engineering%20chemistry%20research&rft.au=Calfa,%20Bruno%20A&rft.date=2015-07-29&rft.volume=54&rft.issue=29&rft.spage=7261&rft.epage=7272&rft.pages=7261-7272&rft.issn=0888-5885&rft.eissn=1520-5045&rft_id=info:doi/10.1021/acs.iecr.5b01273&rft_dat=%3Cproquest_cross%3E1744713486%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1744713486&rft_id=info:pmid/&rfr_iscdi=true