Data-Driven Simulation and Optimization Approaches To Incorporate Production Variability in Sales and Operations Planning
We propose two data-driven, optimization-based frameworks (simulation-optimization and bi-objective optimization) to account for production variability in the operations planning stage of the sales and operations planning (S&OP) of an enterprise. Production variability is measured as the deviati...
Gespeichert in:
Veröffentlicht in: | Industrial & engineering chemistry research 2015-07, Vol.54 (29), p.7261-7272 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 7272 |
---|---|
container_issue | 29 |
container_start_page | 7261 |
container_title | Industrial & engineering chemistry research |
container_volume | 54 |
creator | Calfa, Bruno A Agarwal, Anshul Bury, Scott J Wassick, John M Grossmann, Ignacio E |
description | We propose two data-driven, optimization-based frameworks (simulation-optimization and bi-objective optimization) to account for production variability in the operations planning stage of the sales and operations planning (S&OP) of an enterprise. Production variability is measured as the deviation between historical planned (target) and actual (achieved) production rates. A statistical technique, namely, quantile regression, is used to model the distribution of deviation values given planned production rates. Scenarios are constructed by sampling from the distribution of deviation values and used as inputs to the proposed optimization-based frameworks. Advantages and disadvantages of the two proposed frameworks are discussed. The applicability of the proposed methodology is illustrated with a detailed analysis of the results of a motivating example and a real-world production planning problem from a chemical company. |
doi_str_mv | 10.1021/acs.iecr.5b01273 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1744713486</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1744713486</sourcerecordid><originalsourceid>FETCH-LOGICAL-a350t-35a783af2913acef97e59e3ff8e2150504f1553fcea8199cf28e383646fc74e13</originalsourceid><addsrcrecordid>eNp1kL1PwzAQxS0EEqWwM3pkIMWO48YZq5aPSpVaicIaXd0zuErjYCdI5a_HJV2ZTrr7vad7j5BbzkacpfwBdBhZ1H4kN4ynuTgjAy5TlkiWyXMyYEqpRColL8lVCDvGmJRZNiCHGbSQzLz9xpq-2n1XQWtdTaHe0mXT2r396ReTpvEO9CcGunZ0XmvnG-ehRbrybtvpP-gdvIWNrWx7oDb6QRXx3gr9n0-gqwrq2tYf1-TCQBXw5jSH5O3pcT19SRbL5_l0skhASNYmQkKuBJi04AI0miJHWaAwRmHKJYvxDJdSGI2geFFokyoUSoyzsdF5hlwMyV3vG___6jC05d4GjVV8A10XSp5nWc5FpsYRZT2qvQvBoykbb_fgDyVn5bHlMrZcHlsuTy1HyX0vOV52rvN1zPI__gtjpYLN</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1744713486</pqid></control><display><type>article</type><title>Data-Driven Simulation and Optimization Approaches To Incorporate Production Variability in Sales and Operations Planning</title><source>ACS Publications</source><creator>Calfa, Bruno A ; Agarwal, Anshul ; Bury, Scott J ; Wassick, John M ; Grossmann, Ignacio E</creator><creatorcontrib>Calfa, Bruno A ; Agarwal, Anshul ; Bury, Scott J ; Wassick, John M ; Grossmann, Ignacio E</creatorcontrib><description>We propose two data-driven, optimization-based frameworks (simulation-optimization and bi-objective optimization) to account for production variability in the operations planning stage of the sales and operations planning (S&OP) of an enterprise. Production variability is measured as the deviation between historical planned (target) and actual (achieved) production rates. A statistical technique, namely, quantile regression, is used to model the distribution of deviation values given planned production rates. Scenarios are constructed by sampling from the distribution of deviation values and used as inputs to the proposed optimization-based frameworks. Advantages and disadvantages of the two proposed frameworks are discussed. The applicability of the proposed methodology is illustrated with a detailed analysis of the results of a motivating example and a real-world production planning problem from a chemical company.</description><identifier>ISSN: 0888-5885</identifier><identifier>EISSN: 1520-5045</identifier><identifier>DOI: 10.1021/acs.iecr.5b01273</identifier><language>eng</language><publisher>American Chemical Society</publisher><subject>Deviation ; Historic ; Optimization ; Production planning ; Quantiles ; Regression ; Sales and operations planning ; Sampling</subject><ispartof>Industrial & engineering chemistry research, 2015-07, Vol.54 (29), p.7261-7272</ispartof><rights>Copyright © American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a350t-35a783af2913acef97e59e3ff8e2150504f1553fcea8199cf28e383646fc74e13</citedby><cites>FETCH-LOGICAL-a350t-35a783af2913acef97e59e3ff8e2150504f1553fcea8199cf28e383646fc74e13</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.iecr.5b01273$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.iecr.5b01273$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2751,27055,27903,27904,56716,56766</link.rule.ids></links><search><creatorcontrib>Calfa, Bruno A</creatorcontrib><creatorcontrib>Agarwal, Anshul</creatorcontrib><creatorcontrib>Bury, Scott J</creatorcontrib><creatorcontrib>Wassick, John M</creatorcontrib><creatorcontrib>Grossmann, Ignacio E</creatorcontrib><title>Data-Driven Simulation and Optimization Approaches To Incorporate Production Variability in Sales and Operations Planning</title><title>Industrial & engineering chemistry research</title><addtitle>Ind. Eng. Chem. Res</addtitle><description>We propose two data-driven, optimization-based frameworks (simulation-optimization and bi-objective optimization) to account for production variability in the operations planning stage of the sales and operations planning (S&OP) of an enterprise. Production variability is measured as the deviation between historical planned (target) and actual (achieved) production rates. A statistical technique, namely, quantile regression, is used to model the distribution of deviation values given planned production rates. Scenarios are constructed by sampling from the distribution of deviation values and used as inputs to the proposed optimization-based frameworks. Advantages and disadvantages of the two proposed frameworks are discussed. The applicability of the proposed methodology is illustrated with a detailed analysis of the results of a motivating example and a real-world production planning problem from a chemical company.</description><subject>Deviation</subject><subject>Historic</subject><subject>Optimization</subject><subject>Production planning</subject><subject>Quantiles</subject><subject>Regression</subject><subject>Sales and operations planning</subject><subject>Sampling</subject><issn>0888-5885</issn><issn>1520-5045</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNp1kL1PwzAQxS0EEqWwM3pkIMWO48YZq5aPSpVaicIaXd0zuErjYCdI5a_HJV2ZTrr7vad7j5BbzkacpfwBdBhZ1H4kN4ynuTgjAy5TlkiWyXMyYEqpRColL8lVCDvGmJRZNiCHGbSQzLz9xpq-2n1XQWtdTaHe0mXT2r396ReTpvEO9CcGunZ0XmvnG-ehRbrybtvpP-gdvIWNrWx7oDb6QRXx3gr9n0-gqwrq2tYf1-TCQBXw5jSH5O3pcT19SRbL5_l0skhASNYmQkKuBJi04AI0miJHWaAwRmHKJYvxDJdSGI2geFFokyoUSoyzsdF5hlwMyV3vG___6jC05d4GjVV8A10XSp5nWc5FpsYRZT2qvQvBoykbb_fgDyVn5bHlMrZcHlsuTy1HyX0vOV52rvN1zPI__gtjpYLN</recordid><startdate>20150729</startdate><enddate>20150729</enddate><creator>Calfa, Bruno A</creator><creator>Agarwal, Anshul</creator><creator>Bury, Scott J</creator><creator>Wassick, John M</creator><creator>Grossmann, Ignacio E</creator><general>American Chemical Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>20150729</creationdate><title>Data-Driven Simulation and Optimization Approaches To Incorporate Production Variability in Sales and Operations Planning</title><author>Calfa, Bruno A ; Agarwal, Anshul ; Bury, Scott J ; Wassick, John M ; Grossmann, Ignacio E</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a350t-35a783af2913acef97e59e3ff8e2150504f1553fcea8199cf28e383646fc74e13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Deviation</topic><topic>Historic</topic><topic>Optimization</topic><topic>Production planning</topic><topic>Quantiles</topic><topic>Regression</topic><topic>Sales and operations planning</topic><topic>Sampling</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Calfa, Bruno A</creatorcontrib><creatorcontrib>Agarwal, Anshul</creatorcontrib><creatorcontrib>Bury, Scott J</creatorcontrib><creatorcontrib>Wassick, John M</creatorcontrib><creatorcontrib>Grossmann, Ignacio E</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Industrial & engineering chemistry research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Calfa, Bruno A</au><au>Agarwal, Anshul</au><au>Bury, Scott J</au><au>Wassick, John M</au><au>Grossmann, Ignacio E</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Data-Driven Simulation and Optimization Approaches To Incorporate Production Variability in Sales and Operations Planning</atitle><jtitle>Industrial & engineering chemistry research</jtitle><addtitle>Ind. Eng. Chem. Res</addtitle><date>2015-07-29</date><risdate>2015</risdate><volume>54</volume><issue>29</issue><spage>7261</spage><epage>7272</epage><pages>7261-7272</pages><issn>0888-5885</issn><eissn>1520-5045</eissn><abstract>We propose two data-driven, optimization-based frameworks (simulation-optimization and bi-objective optimization) to account for production variability in the operations planning stage of the sales and operations planning (S&OP) of an enterprise. Production variability is measured as the deviation between historical planned (target) and actual (achieved) production rates. A statistical technique, namely, quantile regression, is used to model the distribution of deviation values given planned production rates. Scenarios are constructed by sampling from the distribution of deviation values and used as inputs to the proposed optimization-based frameworks. Advantages and disadvantages of the two proposed frameworks are discussed. The applicability of the proposed methodology is illustrated with a detailed analysis of the results of a motivating example and a real-world production planning problem from a chemical company.</abstract><pub>American Chemical Society</pub><doi>10.1021/acs.iecr.5b01273</doi><tpages>12</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0888-5885 |
ispartof | Industrial & engineering chemistry research, 2015-07, Vol.54 (29), p.7261-7272 |
issn | 0888-5885 1520-5045 |
language | eng |
recordid | cdi_proquest_miscellaneous_1744713486 |
source | ACS Publications |
subjects | Deviation Historic Optimization Production planning Quantiles Regression Sales and operations planning Sampling |
title | Data-Driven Simulation and Optimization Approaches To Incorporate Production Variability in Sales and Operations Planning |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T16%3A35%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Data-Driven%20Simulation%20and%20Optimization%20Approaches%20To%20Incorporate%20Production%20Variability%20in%20Sales%20and%20Operations%20Planning&rft.jtitle=Industrial%20&%20engineering%20chemistry%20research&rft.au=Calfa,%20Bruno%20A&rft.date=2015-07-29&rft.volume=54&rft.issue=29&rft.spage=7261&rft.epage=7272&rft.pages=7261-7272&rft.issn=0888-5885&rft.eissn=1520-5045&rft_id=info:doi/10.1021/acs.iecr.5b01273&rft_dat=%3Cproquest_cross%3E1744713486%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1744713486&rft_id=info:pmid/&rfr_iscdi=true |