Investigation effect of nanoparticle mean diameter on mixed convection Al2O3-water nanofluid flow in an annulus by two phase mixture model

In this paper, laminar mixed convection of nanofluid (Al2O3–water) in horizontal concentric annulus with constant heat flux boundary condition has been studied. Two thermal boundary conditions were investigated, one in which a uniform heat flux at the inner wall and an adiabatic at the other wall, a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International communications in heat and mass transfer 2013-12, Vol.49, p.25-35
Hauptverfasser: Moghari, R. Mokhtari, Mujumdar, Arun S., Shariat, M., F. Talebi, Sajjadi, S.M., Akbarinia, A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 35
container_issue
container_start_page 25
container_title International communications in heat and mass transfer
container_volume 49
creator Moghari, R. Mokhtari
Mujumdar, Arun S.
Shariat, M.
F. Talebi
Sajjadi, S.M.
Akbarinia, A.
description In this paper, laminar mixed convection of nanofluid (Al2O3–water) in horizontal concentric annulus with constant heat flux boundary condition has been studied. Two thermal boundary conditions were investigated, one in which a uniform heat flux at the inner wall and an adiabatic at the other wall, and the other inner and outer walls were heated in a same heat flux. Two phase mixture model employed to investigate effect of mean diameter of nanoparticle on the hydrodynamics and thermal characteristic. The fluid flow properties are assumed constant except for the density in the body force, which varies linearly with the temperature (Boussinesq's hypothesis), thus the fluid flow characteristics are affected by the buoyancy force. Three dimensional elliptical governing equations have been discretized using the finite volume approach (FVM) using SIMPELC algorithm to investigate fluid flow throughout of an annulus duct. Numerical simulations have been carried out for the nanoparticle volume fraction (ϕ=0.02) and various mean diameters of nanoparticles (dp) between 13 and 72nm and different values of the Grashof and Reynolds numbers. The calculated results demonstrate that Nusselt number decreases with increasing nanoparticle mean diameter while it does not influence significantly the hydrodynamic parameters. Also this results show that nanoparticle distribution at the annuluses cross section is non-uniformity.
doi_str_mv 10.1016/j.icheatmasstransfer.2013.08.017
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1744713286</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0735193313001759</els_id><sourcerecordid>1513486225</sourcerecordid><originalsourceid>FETCH-LOGICAL-c475t-f5f8d4785eb6dbacfe2f71764c574af578b5951ad6aeb3f401feebbe7af0f4ea3</originalsourceid><addsrcrecordid>eNqNkcFu1DAQhiMEEkvhHXxB6iWLndix90ZVQSmq1AucrYkzpl459mI7XfoKfWoctuLSA0gjzUj-_n80_pvmnNEto2z4sN86c4dQZsi5JAjZYtp2lPVbqraUyRfNhim5a-uoXjYbKnvRsl3fv27e5LynlDLF1KZ5vA73mIv7AcXFQNBaNIVESwKEeIBUnPFIZoRAJgczFkykcrP7hRMxsYrNH-GF72779gjr-yq1fnETsT4eiQsE1gqLXzIZH0g5RnK4g4yrTVlS7XFC_7Z5ZcFnfPfUz5rvnz99u_zS3txeXV9e3LSGS1FaK6yauFQCx2EawVjsrGRy4EZIDlZINYqdYDANgGNvOWUWcRxRgqWWI_RnzfnJ95Diz6Uer2eXDXoPAeOSNZOcS9Z3avg3KljP1dB1oqIfT6hJMeeEVh-SmyE9aEb1mpje6-eJ6TUxTZWuMVWL90_bIBvwtjLG5b8-naIdZ5RW7uuJw_pL9666ZOMwGJxcqnHoKbr_X_obIya8sw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1513486225</pqid></control><display><type>article</type><title>Investigation effect of nanoparticle mean diameter on mixed convection Al2O3-water nanofluid flow in an annulus by two phase mixture model</title><source>Elsevier ScienceDirect Journals</source><creator>Moghari, R. Mokhtari ; Mujumdar, Arun S. ; Shariat, M. ; F. Talebi ; Sajjadi, S.M. ; Akbarinia, A.</creator><creatorcontrib>Moghari, R. Mokhtari ; Mujumdar, Arun S. ; Shariat, M. ; F. Talebi ; Sajjadi, S.M. ; Akbarinia, A.</creatorcontrib><description>In this paper, laminar mixed convection of nanofluid (Al2O3–water) in horizontal concentric annulus with constant heat flux boundary condition has been studied. Two thermal boundary conditions were investigated, one in which a uniform heat flux at the inner wall and an adiabatic at the other wall, and the other inner and outer walls were heated in a same heat flux. Two phase mixture model employed to investigate effect of mean diameter of nanoparticle on the hydrodynamics and thermal characteristic. The fluid flow properties are assumed constant except for the density in the body force, which varies linearly with the temperature (Boussinesq's hypothesis), thus the fluid flow characteristics are affected by the buoyancy force. Three dimensional elliptical governing equations have been discretized using the finite volume approach (FVM) using SIMPELC algorithm to investigate fluid flow throughout of an annulus duct. Numerical simulations have been carried out for the nanoparticle volume fraction (ϕ=0.02) and various mean diameters of nanoparticles (dp) between 13 and 72nm and different values of the Grashof and Reynolds numbers. The calculated results demonstrate that Nusselt number decreases with increasing nanoparticle mean diameter while it does not influence significantly the hydrodynamic parameters. Also this results show that nanoparticle distribution at the annuluses cross section is non-uniformity.</description><identifier>ISSN: 0735-1933</identifier><identifier>EISSN: 1879-0178</identifier><identifier>DOI: 10.1016/j.icheatmasstransfer.2013.08.017</identifier><identifier>CODEN: IHMTDL</identifier><language>eng</language><publisher>Kidlington: Elsevier Ltd</publisher><subject>Applied sciences ; Chemistry ; Colloidal state and disperse state ; Computational fluid dynamics ; Condensed matter: structure, mechanical and thermal properties ; Energy ; Energy. Thermal use of fuels ; Exact sciences and technology ; Fluid flow ; General and physical chemistry ; Heat transfer ; Horizontal annulus ; Mathematical models ; Mixture model ; Nanocomposites ; Nanofluids ; Nanomaterials ; Nanoparticle mean diameter ; Nanostructure ; Physical and chemical studies. Granulometry. Electrokinetic phenomena ; Physics ; Theoretical studies. Data and constants. Metering ; Thermal properties of condensed matter ; Thermal properties of small particles, nanocrystals, nanotubes ; Two phase ; Walls</subject><ispartof>International communications in heat and mass transfer, 2013-12, Vol.49, p.25-35</ispartof><rights>2013 Elsevier Ltd</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c475t-f5f8d4785eb6dbacfe2f71764c574af578b5951ad6aeb3f401feebbe7af0f4ea3</citedby><cites>FETCH-LOGICAL-c475t-f5f8d4785eb6dbacfe2f71764c574af578b5951ad6aeb3f401feebbe7af0f4ea3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.icheatmasstransfer.2013.08.017$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,777,781,3537,27905,27906,45976</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=28024100$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Moghari, R. Mokhtari</creatorcontrib><creatorcontrib>Mujumdar, Arun S.</creatorcontrib><creatorcontrib>Shariat, M.</creatorcontrib><creatorcontrib>F. Talebi</creatorcontrib><creatorcontrib>Sajjadi, S.M.</creatorcontrib><creatorcontrib>Akbarinia, A.</creatorcontrib><title>Investigation effect of nanoparticle mean diameter on mixed convection Al2O3-water nanofluid flow in an annulus by two phase mixture model</title><title>International communications in heat and mass transfer</title><description>In this paper, laminar mixed convection of nanofluid (Al2O3–water) in horizontal concentric annulus with constant heat flux boundary condition has been studied. Two thermal boundary conditions were investigated, one in which a uniform heat flux at the inner wall and an adiabatic at the other wall, and the other inner and outer walls were heated in a same heat flux. Two phase mixture model employed to investigate effect of mean diameter of nanoparticle on the hydrodynamics and thermal characteristic. The fluid flow properties are assumed constant except for the density in the body force, which varies linearly with the temperature (Boussinesq's hypothesis), thus the fluid flow characteristics are affected by the buoyancy force. Three dimensional elliptical governing equations have been discretized using the finite volume approach (FVM) using SIMPELC algorithm to investigate fluid flow throughout of an annulus duct. Numerical simulations have been carried out for the nanoparticle volume fraction (ϕ=0.02) and various mean diameters of nanoparticles (dp) between 13 and 72nm and different values of the Grashof and Reynolds numbers. The calculated results demonstrate that Nusselt number decreases with increasing nanoparticle mean diameter while it does not influence significantly the hydrodynamic parameters. Also this results show that nanoparticle distribution at the annuluses cross section is non-uniformity.</description><subject>Applied sciences</subject><subject>Chemistry</subject><subject>Colloidal state and disperse state</subject><subject>Computational fluid dynamics</subject><subject>Condensed matter: structure, mechanical and thermal properties</subject><subject>Energy</subject><subject>Energy. Thermal use of fuels</subject><subject>Exact sciences and technology</subject><subject>Fluid flow</subject><subject>General and physical chemistry</subject><subject>Heat transfer</subject><subject>Horizontal annulus</subject><subject>Mathematical models</subject><subject>Mixture model</subject><subject>Nanocomposites</subject><subject>Nanofluids</subject><subject>Nanomaterials</subject><subject>Nanoparticle mean diameter</subject><subject>Nanostructure</subject><subject>Physical and chemical studies. Granulometry. Electrokinetic phenomena</subject><subject>Physics</subject><subject>Theoretical studies. Data and constants. Metering</subject><subject>Thermal properties of condensed matter</subject><subject>Thermal properties of small particles, nanocrystals, nanotubes</subject><subject>Two phase</subject><subject>Walls</subject><issn>0735-1933</issn><issn>1879-0178</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNqNkcFu1DAQhiMEEkvhHXxB6iWLndix90ZVQSmq1AucrYkzpl459mI7XfoKfWoctuLSA0gjzUj-_n80_pvmnNEto2z4sN86c4dQZsi5JAjZYtp2lPVbqraUyRfNhim5a-uoXjYbKnvRsl3fv27e5LynlDLF1KZ5vA73mIv7AcXFQNBaNIVESwKEeIBUnPFIZoRAJgczFkykcrP7hRMxsYrNH-GF72779gjr-yq1fnETsT4eiQsE1gqLXzIZH0g5RnK4g4yrTVlS7XFC_7Z5ZcFnfPfUz5rvnz99u_zS3txeXV9e3LSGS1FaK6yauFQCx2EawVjsrGRy4EZIDlZINYqdYDANgGNvOWUWcRxRgqWWI_RnzfnJ95Diz6Uer2eXDXoPAeOSNZOcS9Z3avg3KljP1dB1oqIfT6hJMeeEVh-SmyE9aEb1mpje6-eJ6TUxTZWuMVWL90_bIBvwtjLG5b8-naIdZ5RW7uuJw_pL9666ZOMwGJxcqnHoKbr_X_obIya8sw</recordid><startdate>20131201</startdate><enddate>20131201</enddate><creator>Moghari, R. Mokhtari</creator><creator>Mujumdar, Arun S.</creator><creator>Shariat, M.</creator><creator>F. Talebi</creator><creator>Sajjadi, S.M.</creator><creator>Akbarinia, A.</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QQ</scope><scope>7TB</scope><scope>7U5</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>JG9</scope><scope>KR7</scope><scope>L7M</scope></search><sort><creationdate>20131201</creationdate><title>Investigation effect of nanoparticle mean diameter on mixed convection Al2O3-water nanofluid flow in an annulus by two phase mixture model</title><author>Moghari, R. Mokhtari ; Mujumdar, Arun S. ; Shariat, M. ; F. Talebi ; Sajjadi, S.M. ; Akbarinia, A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c475t-f5f8d4785eb6dbacfe2f71764c574af578b5951ad6aeb3f401feebbe7af0f4ea3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Applied sciences</topic><topic>Chemistry</topic><topic>Colloidal state and disperse state</topic><topic>Computational fluid dynamics</topic><topic>Condensed matter: structure, mechanical and thermal properties</topic><topic>Energy</topic><topic>Energy. Thermal use of fuels</topic><topic>Exact sciences and technology</topic><topic>Fluid flow</topic><topic>General and physical chemistry</topic><topic>Heat transfer</topic><topic>Horizontal annulus</topic><topic>Mathematical models</topic><topic>Mixture model</topic><topic>Nanocomposites</topic><topic>Nanofluids</topic><topic>Nanomaterials</topic><topic>Nanoparticle mean diameter</topic><topic>Nanostructure</topic><topic>Physical and chemical studies. Granulometry. Electrokinetic phenomena</topic><topic>Physics</topic><topic>Theoretical studies. Data and constants. Metering</topic><topic>Thermal properties of condensed matter</topic><topic>Thermal properties of small particles, nanocrystals, nanotubes</topic><topic>Two phase</topic><topic>Walls</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Moghari, R. Mokhtari</creatorcontrib><creatorcontrib>Mujumdar, Arun S.</creatorcontrib><creatorcontrib>Shariat, M.</creatorcontrib><creatorcontrib>F. Talebi</creatorcontrib><creatorcontrib>Sajjadi, S.M.</creatorcontrib><creatorcontrib>Akbarinia, A.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>International communications in heat and mass transfer</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Moghari, R. Mokhtari</au><au>Mujumdar, Arun S.</au><au>Shariat, M.</au><au>F. Talebi</au><au>Sajjadi, S.M.</au><au>Akbarinia, A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Investigation effect of nanoparticle mean diameter on mixed convection Al2O3-water nanofluid flow in an annulus by two phase mixture model</atitle><jtitle>International communications in heat and mass transfer</jtitle><date>2013-12-01</date><risdate>2013</risdate><volume>49</volume><spage>25</spage><epage>35</epage><pages>25-35</pages><issn>0735-1933</issn><eissn>1879-0178</eissn><coden>IHMTDL</coden><abstract>In this paper, laminar mixed convection of nanofluid (Al2O3–water) in horizontal concentric annulus with constant heat flux boundary condition has been studied. Two thermal boundary conditions were investigated, one in which a uniform heat flux at the inner wall and an adiabatic at the other wall, and the other inner and outer walls were heated in a same heat flux. Two phase mixture model employed to investigate effect of mean diameter of nanoparticle on the hydrodynamics and thermal characteristic. The fluid flow properties are assumed constant except for the density in the body force, which varies linearly with the temperature (Boussinesq's hypothesis), thus the fluid flow characteristics are affected by the buoyancy force. Three dimensional elliptical governing equations have been discretized using the finite volume approach (FVM) using SIMPELC algorithm to investigate fluid flow throughout of an annulus duct. Numerical simulations have been carried out for the nanoparticle volume fraction (ϕ=0.02) and various mean diameters of nanoparticles (dp) between 13 and 72nm and different values of the Grashof and Reynolds numbers. The calculated results demonstrate that Nusselt number decreases with increasing nanoparticle mean diameter while it does not influence significantly the hydrodynamic parameters. Also this results show that nanoparticle distribution at the annuluses cross section is non-uniformity.</abstract><cop>Kidlington</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.icheatmasstransfer.2013.08.017</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0735-1933
ispartof International communications in heat and mass transfer, 2013-12, Vol.49, p.25-35
issn 0735-1933
1879-0178
language eng
recordid cdi_proquest_miscellaneous_1744713286
source Elsevier ScienceDirect Journals
subjects Applied sciences
Chemistry
Colloidal state and disperse state
Computational fluid dynamics
Condensed matter: structure, mechanical and thermal properties
Energy
Energy. Thermal use of fuels
Exact sciences and technology
Fluid flow
General and physical chemistry
Heat transfer
Horizontal annulus
Mathematical models
Mixture model
Nanocomposites
Nanofluids
Nanomaterials
Nanoparticle mean diameter
Nanostructure
Physical and chemical studies. Granulometry. Electrokinetic phenomena
Physics
Theoretical studies. Data and constants. Metering
Thermal properties of condensed matter
Thermal properties of small particles, nanocrystals, nanotubes
Two phase
Walls
title Investigation effect of nanoparticle mean diameter on mixed convection Al2O3-water nanofluid flow in an annulus by two phase mixture model
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T03%3A31%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Investigation%20effect%20of%20nanoparticle%20mean%20diameter%20on%20mixed%20convection%20Al2O3-water%20nanofluid%20flow%20in%20an%20annulus%20by%20two%20phase%20mixture%20model&rft.jtitle=International%20communications%20in%20heat%20and%20mass%20transfer&rft.au=Moghari,%20R.%20Mokhtari&rft.date=2013-12-01&rft.volume=49&rft.spage=25&rft.epage=35&rft.pages=25-35&rft.issn=0735-1933&rft.eissn=1879-0178&rft.coden=IHMTDL&rft_id=info:doi/10.1016/j.icheatmasstransfer.2013.08.017&rft_dat=%3Cproquest_cross%3E1513486225%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1513486225&rft_id=info:pmid/&rft_els_id=S0735193313001759&rfr_iscdi=true