Investigation effect of nanoparticle mean diameter on mixed convection Al2O3-water nanofluid flow in an annulus by two phase mixture model
In this paper, laminar mixed convection of nanofluid (Al2O3–water) in horizontal concentric annulus with constant heat flux boundary condition has been studied. Two thermal boundary conditions were investigated, one in which a uniform heat flux at the inner wall and an adiabatic at the other wall, a...
Gespeichert in:
Veröffentlicht in: | International communications in heat and mass transfer 2013-12, Vol.49, p.25-35 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 35 |
---|---|
container_issue | |
container_start_page | 25 |
container_title | International communications in heat and mass transfer |
container_volume | 49 |
creator | Moghari, R. Mokhtari Mujumdar, Arun S. Shariat, M. F. Talebi Sajjadi, S.M. Akbarinia, A. |
description | In this paper, laminar mixed convection of nanofluid (Al2O3–water) in horizontal concentric annulus with constant heat flux boundary condition has been studied. Two thermal boundary conditions were investigated, one in which a uniform heat flux at the inner wall and an adiabatic at the other wall, and the other inner and outer walls were heated in a same heat flux. Two phase mixture model employed to investigate effect of mean diameter of nanoparticle on the hydrodynamics and thermal characteristic. The fluid flow properties are assumed constant except for the density in the body force, which varies linearly with the temperature (Boussinesq's hypothesis), thus the fluid flow characteristics are affected by the buoyancy force. Three dimensional elliptical governing equations have been discretized using the finite volume approach (FVM) using SIMPELC algorithm to investigate fluid flow throughout of an annulus duct. Numerical simulations have been carried out for the nanoparticle volume fraction (ϕ=0.02) and various mean diameters of nanoparticles (dp) between 13 and 72nm and different values of the Grashof and Reynolds numbers. The calculated results demonstrate that Nusselt number decreases with increasing nanoparticle mean diameter while it does not influence significantly the hydrodynamic parameters. Also this results show that nanoparticle distribution at the annuluses cross section is non-uniformity. |
doi_str_mv | 10.1016/j.icheatmasstransfer.2013.08.017 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1744713286</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0735193313001759</els_id><sourcerecordid>1513486225</sourcerecordid><originalsourceid>FETCH-LOGICAL-c475t-f5f8d4785eb6dbacfe2f71764c574af578b5951ad6aeb3f401feebbe7af0f4ea3</originalsourceid><addsrcrecordid>eNqNkcFu1DAQhiMEEkvhHXxB6iWLndix90ZVQSmq1AucrYkzpl459mI7XfoKfWoctuLSA0gjzUj-_n80_pvmnNEto2z4sN86c4dQZsi5JAjZYtp2lPVbqraUyRfNhim5a-uoXjYbKnvRsl3fv27e5LynlDLF1KZ5vA73mIv7AcXFQNBaNIVESwKEeIBUnPFIZoRAJgczFkykcrP7hRMxsYrNH-GF72779gjr-yq1fnETsT4eiQsE1gqLXzIZH0g5RnK4g4yrTVlS7XFC_7Z5ZcFnfPfUz5rvnz99u_zS3txeXV9e3LSGS1FaK6yauFQCx2EawVjsrGRy4EZIDlZINYqdYDANgGNvOWUWcRxRgqWWI_RnzfnJ95Diz6Uer2eXDXoPAeOSNZOcS9Z3avg3KljP1dB1oqIfT6hJMeeEVh-SmyE9aEb1mpje6-eJ6TUxTZWuMVWL90_bIBvwtjLG5b8-naIdZ5RW7uuJw_pL9666ZOMwGJxcqnHoKbr_X_obIya8sw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1513486225</pqid></control><display><type>article</type><title>Investigation effect of nanoparticle mean diameter on mixed convection Al2O3-water nanofluid flow in an annulus by two phase mixture model</title><source>Elsevier ScienceDirect Journals</source><creator>Moghari, R. Mokhtari ; Mujumdar, Arun S. ; Shariat, M. ; F. Talebi ; Sajjadi, S.M. ; Akbarinia, A.</creator><creatorcontrib>Moghari, R. Mokhtari ; Mujumdar, Arun S. ; Shariat, M. ; F. Talebi ; Sajjadi, S.M. ; Akbarinia, A.</creatorcontrib><description>In this paper, laminar mixed convection of nanofluid (Al2O3–water) in horizontal concentric annulus with constant heat flux boundary condition has been studied. Two thermal boundary conditions were investigated, one in which a uniform heat flux at the inner wall and an adiabatic at the other wall, and the other inner and outer walls were heated in a same heat flux. Two phase mixture model employed to investigate effect of mean diameter of nanoparticle on the hydrodynamics and thermal characteristic. The fluid flow properties are assumed constant except for the density in the body force, which varies linearly with the temperature (Boussinesq's hypothesis), thus the fluid flow characteristics are affected by the buoyancy force. Three dimensional elliptical governing equations have been discretized using the finite volume approach (FVM) using SIMPELC algorithm to investigate fluid flow throughout of an annulus duct. Numerical simulations have been carried out for the nanoparticle volume fraction (ϕ=0.02) and various mean diameters of nanoparticles (dp) between 13 and 72nm and different values of the Grashof and Reynolds numbers. The calculated results demonstrate that Nusselt number decreases with increasing nanoparticle mean diameter while it does not influence significantly the hydrodynamic parameters. Also this results show that nanoparticle distribution at the annuluses cross section is non-uniformity.</description><identifier>ISSN: 0735-1933</identifier><identifier>EISSN: 1879-0178</identifier><identifier>DOI: 10.1016/j.icheatmasstransfer.2013.08.017</identifier><identifier>CODEN: IHMTDL</identifier><language>eng</language><publisher>Kidlington: Elsevier Ltd</publisher><subject>Applied sciences ; Chemistry ; Colloidal state and disperse state ; Computational fluid dynamics ; Condensed matter: structure, mechanical and thermal properties ; Energy ; Energy. Thermal use of fuels ; Exact sciences and technology ; Fluid flow ; General and physical chemistry ; Heat transfer ; Horizontal annulus ; Mathematical models ; Mixture model ; Nanocomposites ; Nanofluids ; Nanomaterials ; Nanoparticle mean diameter ; Nanostructure ; Physical and chemical studies. Granulometry. Electrokinetic phenomena ; Physics ; Theoretical studies. Data and constants. Metering ; Thermal properties of condensed matter ; Thermal properties of small particles, nanocrystals, nanotubes ; Two phase ; Walls</subject><ispartof>International communications in heat and mass transfer, 2013-12, Vol.49, p.25-35</ispartof><rights>2013 Elsevier Ltd</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c475t-f5f8d4785eb6dbacfe2f71764c574af578b5951ad6aeb3f401feebbe7af0f4ea3</citedby><cites>FETCH-LOGICAL-c475t-f5f8d4785eb6dbacfe2f71764c574af578b5951ad6aeb3f401feebbe7af0f4ea3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.icheatmasstransfer.2013.08.017$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,777,781,3537,27905,27906,45976</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=28024100$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Moghari, R. Mokhtari</creatorcontrib><creatorcontrib>Mujumdar, Arun S.</creatorcontrib><creatorcontrib>Shariat, M.</creatorcontrib><creatorcontrib>F. Talebi</creatorcontrib><creatorcontrib>Sajjadi, S.M.</creatorcontrib><creatorcontrib>Akbarinia, A.</creatorcontrib><title>Investigation effect of nanoparticle mean diameter on mixed convection Al2O3-water nanofluid flow in an annulus by two phase mixture model</title><title>International communications in heat and mass transfer</title><description>In this paper, laminar mixed convection of nanofluid (Al2O3–water) in horizontal concentric annulus with constant heat flux boundary condition has been studied. Two thermal boundary conditions were investigated, one in which a uniform heat flux at the inner wall and an adiabatic at the other wall, and the other inner and outer walls were heated in a same heat flux. Two phase mixture model employed to investigate effect of mean diameter of nanoparticle on the hydrodynamics and thermal characteristic. The fluid flow properties are assumed constant except for the density in the body force, which varies linearly with the temperature (Boussinesq's hypothesis), thus the fluid flow characteristics are affected by the buoyancy force. Three dimensional elliptical governing equations have been discretized using the finite volume approach (FVM) using SIMPELC algorithm to investigate fluid flow throughout of an annulus duct. Numerical simulations have been carried out for the nanoparticle volume fraction (ϕ=0.02) and various mean diameters of nanoparticles (dp) between 13 and 72nm and different values of the Grashof and Reynolds numbers. The calculated results demonstrate that Nusselt number decreases with increasing nanoparticle mean diameter while it does not influence significantly the hydrodynamic parameters. Also this results show that nanoparticle distribution at the annuluses cross section is non-uniformity.</description><subject>Applied sciences</subject><subject>Chemistry</subject><subject>Colloidal state and disperse state</subject><subject>Computational fluid dynamics</subject><subject>Condensed matter: structure, mechanical and thermal properties</subject><subject>Energy</subject><subject>Energy. Thermal use of fuels</subject><subject>Exact sciences and technology</subject><subject>Fluid flow</subject><subject>General and physical chemistry</subject><subject>Heat transfer</subject><subject>Horizontal annulus</subject><subject>Mathematical models</subject><subject>Mixture model</subject><subject>Nanocomposites</subject><subject>Nanofluids</subject><subject>Nanomaterials</subject><subject>Nanoparticle mean diameter</subject><subject>Nanostructure</subject><subject>Physical and chemical studies. Granulometry. Electrokinetic phenomena</subject><subject>Physics</subject><subject>Theoretical studies. Data and constants. Metering</subject><subject>Thermal properties of condensed matter</subject><subject>Thermal properties of small particles, nanocrystals, nanotubes</subject><subject>Two phase</subject><subject>Walls</subject><issn>0735-1933</issn><issn>1879-0178</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNqNkcFu1DAQhiMEEkvhHXxB6iWLndix90ZVQSmq1AucrYkzpl459mI7XfoKfWoctuLSA0gjzUj-_n80_pvmnNEto2z4sN86c4dQZsi5JAjZYtp2lPVbqraUyRfNhim5a-uoXjYbKnvRsl3fv27e5LynlDLF1KZ5vA73mIv7AcXFQNBaNIVESwKEeIBUnPFIZoRAJgczFkykcrP7hRMxsYrNH-GF72779gjr-yq1fnETsT4eiQsE1gqLXzIZH0g5RnK4g4yrTVlS7XFC_7Z5ZcFnfPfUz5rvnz99u_zS3txeXV9e3LSGS1FaK6yauFQCx2EawVjsrGRy4EZIDlZINYqdYDANgGNvOWUWcRxRgqWWI_RnzfnJ95Diz6Uer2eXDXoPAeOSNZOcS9Z3avg3KljP1dB1oqIfT6hJMeeEVh-SmyE9aEb1mpje6-eJ6TUxTZWuMVWL90_bIBvwtjLG5b8-naIdZ5RW7uuJw_pL9666ZOMwGJxcqnHoKbr_X_obIya8sw</recordid><startdate>20131201</startdate><enddate>20131201</enddate><creator>Moghari, R. Mokhtari</creator><creator>Mujumdar, Arun S.</creator><creator>Shariat, M.</creator><creator>F. Talebi</creator><creator>Sajjadi, S.M.</creator><creator>Akbarinia, A.</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QQ</scope><scope>7TB</scope><scope>7U5</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>JG9</scope><scope>KR7</scope><scope>L7M</scope></search><sort><creationdate>20131201</creationdate><title>Investigation effect of nanoparticle mean diameter on mixed convection Al2O3-water nanofluid flow in an annulus by two phase mixture model</title><author>Moghari, R. Mokhtari ; Mujumdar, Arun S. ; Shariat, M. ; F. Talebi ; Sajjadi, S.M. ; Akbarinia, A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c475t-f5f8d4785eb6dbacfe2f71764c574af578b5951ad6aeb3f401feebbe7af0f4ea3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Applied sciences</topic><topic>Chemistry</topic><topic>Colloidal state and disperse state</topic><topic>Computational fluid dynamics</topic><topic>Condensed matter: structure, mechanical and thermal properties</topic><topic>Energy</topic><topic>Energy. Thermal use of fuels</topic><topic>Exact sciences and technology</topic><topic>Fluid flow</topic><topic>General and physical chemistry</topic><topic>Heat transfer</topic><topic>Horizontal annulus</topic><topic>Mathematical models</topic><topic>Mixture model</topic><topic>Nanocomposites</topic><topic>Nanofluids</topic><topic>Nanomaterials</topic><topic>Nanoparticle mean diameter</topic><topic>Nanostructure</topic><topic>Physical and chemical studies. Granulometry. Electrokinetic phenomena</topic><topic>Physics</topic><topic>Theoretical studies. Data and constants. Metering</topic><topic>Thermal properties of condensed matter</topic><topic>Thermal properties of small particles, nanocrystals, nanotubes</topic><topic>Two phase</topic><topic>Walls</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Moghari, R. Mokhtari</creatorcontrib><creatorcontrib>Mujumdar, Arun S.</creatorcontrib><creatorcontrib>Shariat, M.</creatorcontrib><creatorcontrib>F. Talebi</creatorcontrib><creatorcontrib>Sajjadi, S.M.</creatorcontrib><creatorcontrib>Akbarinia, A.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>International communications in heat and mass transfer</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Moghari, R. Mokhtari</au><au>Mujumdar, Arun S.</au><au>Shariat, M.</au><au>F. Talebi</au><au>Sajjadi, S.M.</au><au>Akbarinia, A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Investigation effect of nanoparticle mean diameter on mixed convection Al2O3-water nanofluid flow in an annulus by two phase mixture model</atitle><jtitle>International communications in heat and mass transfer</jtitle><date>2013-12-01</date><risdate>2013</risdate><volume>49</volume><spage>25</spage><epage>35</epage><pages>25-35</pages><issn>0735-1933</issn><eissn>1879-0178</eissn><coden>IHMTDL</coden><abstract>In this paper, laminar mixed convection of nanofluid (Al2O3–water) in horizontal concentric annulus with constant heat flux boundary condition has been studied. Two thermal boundary conditions were investigated, one in which a uniform heat flux at the inner wall and an adiabatic at the other wall, and the other inner and outer walls were heated in a same heat flux. Two phase mixture model employed to investigate effect of mean diameter of nanoparticle on the hydrodynamics and thermal characteristic. The fluid flow properties are assumed constant except for the density in the body force, which varies linearly with the temperature (Boussinesq's hypothesis), thus the fluid flow characteristics are affected by the buoyancy force. Three dimensional elliptical governing equations have been discretized using the finite volume approach (FVM) using SIMPELC algorithm to investigate fluid flow throughout of an annulus duct. Numerical simulations have been carried out for the nanoparticle volume fraction (ϕ=0.02) and various mean diameters of nanoparticles (dp) between 13 and 72nm and different values of the Grashof and Reynolds numbers. The calculated results demonstrate that Nusselt number decreases with increasing nanoparticle mean diameter while it does not influence significantly the hydrodynamic parameters. Also this results show that nanoparticle distribution at the annuluses cross section is non-uniformity.</abstract><cop>Kidlington</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.icheatmasstransfer.2013.08.017</doi><tpages>11</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0735-1933 |
ispartof | International communications in heat and mass transfer, 2013-12, Vol.49, p.25-35 |
issn | 0735-1933 1879-0178 |
language | eng |
recordid | cdi_proquest_miscellaneous_1744713286 |
source | Elsevier ScienceDirect Journals |
subjects | Applied sciences Chemistry Colloidal state and disperse state Computational fluid dynamics Condensed matter: structure, mechanical and thermal properties Energy Energy. Thermal use of fuels Exact sciences and technology Fluid flow General and physical chemistry Heat transfer Horizontal annulus Mathematical models Mixture model Nanocomposites Nanofluids Nanomaterials Nanoparticle mean diameter Nanostructure Physical and chemical studies. Granulometry. Electrokinetic phenomena Physics Theoretical studies. Data and constants. Metering Thermal properties of condensed matter Thermal properties of small particles, nanocrystals, nanotubes Two phase Walls |
title | Investigation effect of nanoparticle mean diameter on mixed convection Al2O3-water nanofluid flow in an annulus by two phase mixture model |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T03%3A31%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Investigation%20effect%20of%20nanoparticle%20mean%20diameter%20on%20mixed%20convection%20Al2O3-water%20nanofluid%20flow%20in%20an%20annulus%20by%20two%20phase%20mixture%20model&rft.jtitle=International%20communications%20in%20heat%20and%20mass%20transfer&rft.au=Moghari,%20R.%20Mokhtari&rft.date=2013-12-01&rft.volume=49&rft.spage=25&rft.epage=35&rft.pages=25-35&rft.issn=0735-1933&rft.eissn=1879-0178&rft.coden=IHMTDL&rft_id=info:doi/10.1016/j.icheatmasstransfer.2013.08.017&rft_dat=%3Cproquest_cross%3E1513486225%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1513486225&rft_id=info:pmid/&rft_els_id=S0735193313001759&rfr_iscdi=true |