Silicon‐Rich Carbon Hybrid Nanofibers from Water‐Based Spinning: The Synergy Between Silicon and Carbon for Li‐ion Battery Anode Application
Hybrid carbon nanofibers (NFs) with extremely high Si loading (>65 wt %) are fabricated through the water‐based electrospinning of polyvinyl alcohol/Si nanoparticle (NP) solutions for Li‐ion battery anode applications. Our Si‐rich carbon (SRC) NFs show many facilitated charge‐transport features a...
Gespeichert in:
Veröffentlicht in: | ChemElectroChem 2014-01, Vol.1 (1), p.220-226 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 226 |
---|---|
container_issue | 1 |
container_start_page | 220 |
container_title | ChemElectroChem |
container_volume | 1 |
creator | Kim, Yong Seok Kim, Kyung Woo Cho, Daehwan Hansen, Nathaniel S. Lee, Jinwoo Joo, Yong Lak |
description | Hybrid carbon nanofibers (NFs) with extremely high Si loading (>65 wt %) are fabricated through the water‐based electrospinning of polyvinyl alcohol/Si nanoparticle (NP) solutions for Li‐ion battery anode applications. Our Si‐rich carbon (SRC) NFs show many facilitated charge‐transport features and increased activities because of the continuous one‐dimensional (1D) carbon backbone structure with dispersed Si NP domains. This leads to superior battery performance compared to that of bare silicon NPs. The presence of carbon as 1D NFs can not only mitigate the volume change of silicon but also avoid the formation of an unstable solid‐electrolyte interface on the surface of silicon. Our study, regarding the optimum combination of C and Si in the NFs for their improved electrochemical properties and battery performance, reveals that SRC NFs containing 72.8 wt % Si (27.2 wt % C) exhibit an adequate balance between the high energy capacity of Si NPs and the dimensional stability and effective charge transport of carbon NFs. This optimum Si/C ratio leads to an outstanding cycle life, which maintains 1076 mAh g−1 capacity normalized by the total electrode mass, and a Coulombic efficiency of about 99 % over 50 cycles. Such scalable SRC NFs produced through the water‐based spinning approach can offer a cost‐effective development for high‐performance battery anodes.
Spinning top: Silicon‐rich carbon nanofibers produced through water‐based spinning exhibit high energy capacity and good cycle ability in the Li‐ion battery anode application. They maintain a high surface area, accommodate severe volume changes within the carbon backbone, avoid the formation of unstable solid‐electrolyte interface layers on the surface of silicon, and ensure high electrical or electronic conductivity. |
doi_str_mv | 10.1002/celc.201300103 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1744713011</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1744713011</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3873-d61d3a68b3db846919dd2aac1dc80e3c1980320d6d810180e3274c4a74e1adb53</originalsourceid><addsrcrecordid>eNqFkUFP3DAQhaOqSEXAtWdLvfSyy0wcnKS33YgC0goklopj5NgTMMraqZ0Vyq0_AfET-SV4tRQQF062x997Gr2XJN8RpgiQHirq1DQF5AAI_Euym2IpJpCi-Pru_i05COEOIoNwxAuxmzwuTWeUs0__Hi6NumWV9I2z7HRsvNHsXFrXmoZ8YK13K3YtB_IRnctAmi17Y62xN7_Y1S2x5WjJ34xsTsM9kWUvxkxa_d-1dZ4tTNSb-JjLIZqNbGadJjbr-4jLIf7sJzut7AIdvJx7yZ_fx1fV6WRxcXJWzRYTxYucT7RAzaUoGq6bIhMlllqnUirUqgDiCssCeApa6AIBN6M0z1Qm84xQ6uaI7yU_t769d3_XFIZ6ZULMsZOW3DrUmGdZHgNFjOiPD-idW3sbt4sUiFQIEBtquqWUdyF4auvem5X0Y41Qb1qqNy3Vry1FQbkV3JuOxk_oujpeVG_aZ6e9mLQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1706266061</pqid></control><display><type>article</type><title>Silicon‐Rich Carbon Hybrid Nanofibers from Water‐Based Spinning: The Synergy Between Silicon and Carbon for Li‐ion Battery Anode Application</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Kim, Yong Seok ; Kim, Kyung Woo ; Cho, Daehwan ; Hansen, Nathaniel S. ; Lee, Jinwoo ; Joo, Yong Lak</creator><creatorcontrib>Kim, Yong Seok ; Kim, Kyung Woo ; Cho, Daehwan ; Hansen, Nathaniel S. ; Lee, Jinwoo ; Joo, Yong Lak</creatorcontrib><description>Hybrid carbon nanofibers (NFs) with extremely high Si loading (>65 wt %) are fabricated through the water‐based electrospinning of polyvinyl alcohol/Si nanoparticle (NP) solutions for Li‐ion battery anode applications. Our Si‐rich carbon (SRC) NFs show many facilitated charge‐transport features and increased activities because of the continuous one‐dimensional (1D) carbon backbone structure with dispersed Si NP domains. This leads to superior battery performance compared to that of bare silicon NPs. The presence of carbon as 1D NFs can not only mitigate the volume change of silicon but also avoid the formation of an unstable solid‐electrolyte interface on the surface of silicon. Our study, regarding the optimum combination of C and Si in the NFs for their improved electrochemical properties and battery performance, reveals that SRC NFs containing 72.8 wt % Si (27.2 wt % C) exhibit an adequate balance between the high energy capacity of Si NPs and the dimensional stability and effective charge transport of carbon NFs. This optimum Si/C ratio leads to an outstanding cycle life, which maintains 1076 mAh g−1 capacity normalized by the total electrode mass, and a Coulombic efficiency of about 99 % over 50 cycles. Such scalable SRC NFs produced through the water‐based spinning approach can offer a cost‐effective development for high‐performance battery anodes.
Spinning top: Silicon‐rich carbon nanofibers produced through water‐based spinning exhibit high energy capacity and good cycle ability in the Li‐ion battery anode application. They maintain a high surface area, accommodate severe volume changes within the carbon backbone, avoid the formation of unstable solid‐electrolyte interface layers on the surface of silicon, and ensure high electrical or electronic conductivity.</description><identifier>ISSN: 2196-0216</identifier><identifier>EISSN: 2196-0216</identifier><identifier>DOI: 10.1002/celc.201300103</identifier><language>eng</language><publisher>Weinheim: WILEY‐VCH Verlag</publisher><subject>Anodes ; Backbone ; Batteries ; Battery ; Carbon ; electrospinning ; Lithium-ion batteries ; Nanofibers ; nanostructures ; polymers ; Product design ; Silicon ; Spinning</subject><ispartof>ChemElectroChem, 2014-01, Vol.1 (1), p.220-226</ispartof><rights>Copyright © 2014 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim</rights><rights>Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3873-d61d3a68b3db846919dd2aac1dc80e3c1980320d6d810180e3274c4a74e1adb53</citedby><cites>FETCH-LOGICAL-c3873-d61d3a68b3db846919dd2aac1dc80e3c1980320d6d810180e3274c4a74e1adb53</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fcelc.201300103$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fcelc.201300103$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27903,27904,45553,45554</link.rule.ids></links><search><creatorcontrib>Kim, Yong Seok</creatorcontrib><creatorcontrib>Kim, Kyung Woo</creatorcontrib><creatorcontrib>Cho, Daehwan</creatorcontrib><creatorcontrib>Hansen, Nathaniel S.</creatorcontrib><creatorcontrib>Lee, Jinwoo</creatorcontrib><creatorcontrib>Joo, Yong Lak</creatorcontrib><title>Silicon‐Rich Carbon Hybrid Nanofibers from Water‐Based Spinning: The Synergy Between Silicon and Carbon for Li‐ion Battery Anode Application</title><title>ChemElectroChem</title><description>Hybrid carbon nanofibers (NFs) with extremely high Si loading (>65 wt %) are fabricated through the water‐based electrospinning of polyvinyl alcohol/Si nanoparticle (NP) solutions for Li‐ion battery anode applications. Our Si‐rich carbon (SRC) NFs show many facilitated charge‐transport features and increased activities because of the continuous one‐dimensional (1D) carbon backbone structure with dispersed Si NP domains. This leads to superior battery performance compared to that of bare silicon NPs. The presence of carbon as 1D NFs can not only mitigate the volume change of silicon but also avoid the formation of an unstable solid‐electrolyte interface on the surface of silicon. Our study, regarding the optimum combination of C and Si in the NFs for their improved electrochemical properties and battery performance, reveals that SRC NFs containing 72.8 wt % Si (27.2 wt % C) exhibit an adequate balance between the high energy capacity of Si NPs and the dimensional stability and effective charge transport of carbon NFs. This optimum Si/C ratio leads to an outstanding cycle life, which maintains 1076 mAh g−1 capacity normalized by the total electrode mass, and a Coulombic efficiency of about 99 % over 50 cycles. Such scalable SRC NFs produced through the water‐based spinning approach can offer a cost‐effective development for high‐performance battery anodes.
Spinning top: Silicon‐rich carbon nanofibers produced through water‐based spinning exhibit high energy capacity and good cycle ability in the Li‐ion battery anode application. They maintain a high surface area, accommodate severe volume changes within the carbon backbone, avoid the formation of unstable solid‐electrolyte interface layers on the surface of silicon, and ensure high electrical or electronic conductivity.</description><subject>Anodes</subject><subject>Backbone</subject><subject>Batteries</subject><subject>Battery</subject><subject>Carbon</subject><subject>electrospinning</subject><subject>Lithium-ion batteries</subject><subject>Nanofibers</subject><subject>nanostructures</subject><subject>polymers</subject><subject>Product design</subject><subject>Silicon</subject><subject>Spinning</subject><issn>2196-0216</issn><issn>2196-0216</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNqFkUFP3DAQhaOqSEXAtWdLvfSyy0wcnKS33YgC0goklopj5NgTMMraqZ0Vyq0_AfET-SV4tRQQF062x997Gr2XJN8RpgiQHirq1DQF5AAI_Euym2IpJpCi-Pru_i05COEOIoNwxAuxmzwuTWeUs0__Hi6NumWV9I2z7HRsvNHsXFrXmoZ8YK13K3YtB_IRnctAmi17Y62xN7_Y1S2x5WjJ34xsTsM9kWUvxkxa_d-1dZ4tTNSb-JjLIZqNbGadJjbr-4jLIf7sJzut7AIdvJx7yZ_fx1fV6WRxcXJWzRYTxYucT7RAzaUoGq6bIhMlllqnUirUqgDiCssCeApa6AIBN6M0z1Qm84xQ6uaI7yU_t769d3_XFIZ6ZULMsZOW3DrUmGdZHgNFjOiPD-idW3sbt4sUiFQIEBtquqWUdyF4auvem5X0Y41Qb1qqNy3Vry1FQbkV3JuOxk_oujpeVG_aZ6e9mLQ</recordid><startdate>20140103</startdate><enddate>20140103</enddate><creator>Kim, Yong Seok</creator><creator>Kim, Kyung Woo</creator><creator>Cho, Daehwan</creator><creator>Hansen, Nathaniel S.</creator><creator>Lee, Jinwoo</creator><creator>Joo, Yong Lak</creator><general>WILEY‐VCH Verlag</general><general>John Wiley & Sons, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>7TB</scope><scope>7U5</scope><scope>FR3</scope><scope>L7M</scope></search><sort><creationdate>20140103</creationdate><title>Silicon‐Rich Carbon Hybrid Nanofibers from Water‐Based Spinning: The Synergy Between Silicon and Carbon for Li‐ion Battery Anode Application</title><author>Kim, Yong Seok ; Kim, Kyung Woo ; Cho, Daehwan ; Hansen, Nathaniel S. ; Lee, Jinwoo ; Joo, Yong Lak</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3873-d61d3a68b3db846919dd2aac1dc80e3c1980320d6d810180e3274c4a74e1adb53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Anodes</topic><topic>Backbone</topic><topic>Batteries</topic><topic>Battery</topic><topic>Carbon</topic><topic>electrospinning</topic><topic>Lithium-ion batteries</topic><topic>Nanofibers</topic><topic>nanostructures</topic><topic>polymers</topic><topic>Product design</topic><topic>Silicon</topic><topic>Spinning</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kim, Yong Seok</creatorcontrib><creatorcontrib>Kim, Kyung Woo</creatorcontrib><creatorcontrib>Cho, Daehwan</creatorcontrib><creatorcontrib>Hansen, Nathaniel S.</creatorcontrib><creatorcontrib>Lee, Jinwoo</creatorcontrib><creatorcontrib>Joo, Yong Lak</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>ChemElectroChem</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kim, Yong Seok</au><au>Kim, Kyung Woo</au><au>Cho, Daehwan</au><au>Hansen, Nathaniel S.</au><au>Lee, Jinwoo</au><au>Joo, Yong Lak</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Silicon‐Rich Carbon Hybrid Nanofibers from Water‐Based Spinning: The Synergy Between Silicon and Carbon for Li‐ion Battery Anode Application</atitle><jtitle>ChemElectroChem</jtitle><date>2014-01-03</date><risdate>2014</risdate><volume>1</volume><issue>1</issue><spage>220</spage><epage>226</epage><pages>220-226</pages><issn>2196-0216</issn><eissn>2196-0216</eissn><abstract>Hybrid carbon nanofibers (NFs) with extremely high Si loading (>65 wt %) are fabricated through the water‐based electrospinning of polyvinyl alcohol/Si nanoparticle (NP) solutions for Li‐ion battery anode applications. Our Si‐rich carbon (SRC) NFs show many facilitated charge‐transport features and increased activities because of the continuous one‐dimensional (1D) carbon backbone structure with dispersed Si NP domains. This leads to superior battery performance compared to that of bare silicon NPs. The presence of carbon as 1D NFs can not only mitigate the volume change of silicon but also avoid the formation of an unstable solid‐electrolyte interface on the surface of silicon. Our study, regarding the optimum combination of C and Si in the NFs for their improved electrochemical properties and battery performance, reveals that SRC NFs containing 72.8 wt % Si (27.2 wt % C) exhibit an adequate balance between the high energy capacity of Si NPs and the dimensional stability and effective charge transport of carbon NFs. This optimum Si/C ratio leads to an outstanding cycle life, which maintains 1076 mAh g−1 capacity normalized by the total electrode mass, and a Coulombic efficiency of about 99 % over 50 cycles. Such scalable SRC NFs produced through the water‐based spinning approach can offer a cost‐effective development for high‐performance battery anodes.
Spinning top: Silicon‐rich carbon nanofibers produced through water‐based spinning exhibit high energy capacity and good cycle ability in the Li‐ion battery anode application. They maintain a high surface area, accommodate severe volume changes within the carbon backbone, avoid the formation of unstable solid‐electrolyte interface layers on the surface of silicon, and ensure high electrical or electronic conductivity.</abstract><cop>Weinheim</cop><pub>WILEY‐VCH Verlag</pub><doi>10.1002/celc.201300103</doi><tpages>7</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2196-0216 |
ispartof | ChemElectroChem, 2014-01, Vol.1 (1), p.220-226 |
issn | 2196-0216 2196-0216 |
language | eng |
recordid | cdi_proquest_miscellaneous_1744713011 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | Anodes Backbone Batteries Battery Carbon electrospinning Lithium-ion batteries Nanofibers nanostructures polymers Product design Silicon Spinning |
title | Silicon‐Rich Carbon Hybrid Nanofibers from Water‐Based Spinning: The Synergy Between Silicon and Carbon for Li‐ion Battery Anode Application |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T17%3A18%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Silicon%E2%80%90Rich%20Carbon%20Hybrid%20Nanofibers%20from%20Water%E2%80%90Based%20Spinning:%20The%20Synergy%20Between%20Silicon%20and%20Carbon%20for%20Li%E2%80%90ion%20Battery%20Anode%20Application&rft.jtitle=ChemElectroChem&rft.au=Kim,%20Yong%20Seok&rft.date=2014-01-03&rft.volume=1&rft.issue=1&rft.spage=220&rft.epage=226&rft.pages=220-226&rft.issn=2196-0216&rft.eissn=2196-0216&rft_id=info:doi/10.1002/celc.201300103&rft_dat=%3Cproquest_cross%3E1744713011%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1706266061&rft_id=info:pmid/&rfr_iscdi=true |