Silicon‐Rich Carbon Hybrid Nanofibers from Water‐Based Spinning: The Synergy Between Silicon and Carbon for Li‐ion Battery Anode Application

Hybrid carbon nanofibers (NFs) with extremely high Si loading (>65 wt %) are fabricated through the water‐based electrospinning of polyvinyl alcohol/Si nanoparticle (NP) solutions for Li‐ion battery anode applications. Our Si‐rich carbon (SRC) NFs show many facilitated charge‐transport features a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ChemElectroChem 2014-01, Vol.1 (1), p.220-226
Hauptverfasser: Kim, Yong Seok, Kim, Kyung Woo, Cho, Daehwan, Hansen, Nathaniel S., Lee, Jinwoo, Joo, Yong Lak
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 226
container_issue 1
container_start_page 220
container_title ChemElectroChem
container_volume 1
creator Kim, Yong Seok
Kim, Kyung Woo
Cho, Daehwan
Hansen, Nathaniel S.
Lee, Jinwoo
Joo, Yong Lak
description Hybrid carbon nanofibers (NFs) with extremely high Si loading (>65 wt %) are fabricated through the water‐based electrospinning of polyvinyl alcohol/Si nanoparticle (NP) solutions for Li‐ion battery anode applications. Our Si‐rich carbon (SRC) NFs show many facilitated charge‐transport features and increased activities because of the continuous one‐dimensional (1D) carbon backbone structure with dispersed Si NP domains. This leads to superior battery performance compared to that of bare silicon NPs. The presence of carbon as 1D NFs can not only mitigate the volume change of silicon but also avoid the formation of an unstable solid‐electrolyte interface on the surface of silicon. Our study, regarding the optimum combination of C and Si in the NFs for their improved electrochemical properties and battery performance, reveals that SRC NFs containing 72.8 wt % Si (27.2 wt % C) exhibit an adequate balance between the high energy capacity of Si NPs and the dimensional stability and effective charge transport of carbon NFs. This optimum Si/C ratio leads to an outstanding cycle life, which maintains 1076 mAh g−1 capacity normalized by the total electrode mass, and a Coulombic efficiency of about 99 % over 50 cycles. Such scalable SRC NFs produced through the water‐based spinning approach can offer a cost‐effective development for high‐performance battery anodes. Spinning top: Silicon‐rich carbon nanofibers produced through water‐based spinning exhibit high energy capacity and good cycle ability in the Li‐ion battery anode application. They maintain a high surface area, accommodate severe volume changes within the carbon backbone, avoid the formation of unstable solid‐electrolyte interface layers on the surface of silicon, and ensure high electrical or electronic conductivity.
doi_str_mv 10.1002/celc.201300103
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1744713011</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1744713011</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3873-d61d3a68b3db846919dd2aac1dc80e3c1980320d6d810180e3274c4a74e1adb53</originalsourceid><addsrcrecordid>eNqFkUFP3DAQhaOqSEXAtWdLvfSyy0wcnKS33YgC0goklopj5NgTMMraqZ0Vyq0_AfET-SV4tRQQF062x997Gr2XJN8RpgiQHirq1DQF5AAI_Euym2IpJpCi-Pru_i05COEOIoNwxAuxmzwuTWeUs0__Hi6NumWV9I2z7HRsvNHsXFrXmoZ8YK13K3YtB_IRnctAmi17Y62xN7_Y1S2x5WjJ34xsTsM9kWUvxkxa_d-1dZ4tTNSb-JjLIZqNbGadJjbr-4jLIf7sJzut7AIdvJx7yZ_fx1fV6WRxcXJWzRYTxYucT7RAzaUoGq6bIhMlllqnUirUqgDiCssCeApa6AIBN6M0z1Qm84xQ6uaI7yU_t769d3_XFIZ6ZULMsZOW3DrUmGdZHgNFjOiPD-idW3sbt4sUiFQIEBtquqWUdyF4auvem5X0Y41Qb1qqNy3Vry1FQbkV3JuOxk_oujpeVG_aZ6e9mLQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1706266061</pqid></control><display><type>article</type><title>Silicon‐Rich Carbon Hybrid Nanofibers from Water‐Based Spinning: The Synergy Between Silicon and Carbon for Li‐ion Battery Anode Application</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Kim, Yong Seok ; Kim, Kyung Woo ; Cho, Daehwan ; Hansen, Nathaniel S. ; Lee, Jinwoo ; Joo, Yong Lak</creator><creatorcontrib>Kim, Yong Seok ; Kim, Kyung Woo ; Cho, Daehwan ; Hansen, Nathaniel S. ; Lee, Jinwoo ; Joo, Yong Lak</creatorcontrib><description>Hybrid carbon nanofibers (NFs) with extremely high Si loading (&gt;65 wt %) are fabricated through the water‐based electrospinning of polyvinyl alcohol/Si nanoparticle (NP) solutions for Li‐ion battery anode applications. Our Si‐rich carbon (SRC) NFs show many facilitated charge‐transport features and increased activities because of the continuous one‐dimensional (1D) carbon backbone structure with dispersed Si NP domains. This leads to superior battery performance compared to that of bare silicon NPs. The presence of carbon as 1D NFs can not only mitigate the volume change of silicon but also avoid the formation of an unstable solid‐electrolyte interface on the surface of silicon. Our study, regarding the optimum combination of C and Si in the NFs for their improved electrochemical properties and battery performance, reveals that SRC NFs containing 72.8 wt % Si (27.2 wt % C) exhibit an adequate balance between the high energy capacity of Si NPs and the dimensional stability and effective charge transport of carbon NFs. This optimum Si/C ratio leads to an outstanding cycle life, which maintains 1076 mAh g−1 capacity normalized by the total electrode mass, and a Coulombic efficiency of about 99 % over 50 cycles. Such scalable SRC NFs produced through the water‐based spinning approach can offer a cost‐effective development for high‐performance battery anodes. Spinning top: Silicon‐rich carbon nanofibers produced through water‐based spinning exhibit high energy capacity and good cycle ability in the Li‐ion battery anode application. They maintain a high surface area, accommodate severe volume changes within the carbon backbone, avoid the formation of unstable solid‐electrolyte interface layers on the surface of silicon, and ensure high electrical or electronic conductivity.</description><identifier>ISSN: 2196-0216</identifier><identifier>EISSN: 2196-0216</identifier><identifier>DOI: 10.1002/celc.201300103</identifier><language>eng</language><publisher>Weinheim: WILEY‐VCH Verlag</publisher><subject>Anodes ; Backbone ; Batteries ; Battery ; Carbon ; electrospinning ; Lithium-ion batteries ; Nanofibers ; nanostructures ; polymers ; Product design ; Silicon ; Spinning</subject><ispartof>ChemElectroChem, 2014-01, Vol.1 (1), p.220-226</ispartof><rights>Copyright © 2014 WILEY‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><rights>Copyright © 2014 WILEY-VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3873-d61d3a68b3db846919dd2aac1dc80e3c1980320d6d810180e3274c4a74e1adb53</citedby><cites>FETCH-LOGICAL-c3873-d61d3a68b3db846919dd2aac1dc80e3c1980320d6d810180e3274c4a74e1adb53</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fcelc.201300103$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fcelc.201300103$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27903,27904,45553,45554</link.rule.ids></links><search><creatorcontrib>Kim, Yong Seok</creatorcontrib><creatorcontrib>Kim, Kyung Woo</creatorcontrib><creatorcontrib>Cho, Daehwan</creatorcontrib><creatorcontrib>Hansen, Nathaniel S.</creatorcontrib><creatorcontrib>Lee, Jinwoo</creatorcontrib><creatorcontrib>Joo, Yong Lak</creatorcontrib><title>Silicon‐Rich Carbon Hybrid Nanofibers from Water‐Based Spinning: The Synergy Between Silicon and Carbon for Li‐ion Battery Anode Application</title><title>ChemElectroChem</title><description>Hybrid carbon nanofibers (NFs) with extremely high Si loading (&gt;65 wt %) are fabricated through the water‐based electrospinning of polyvinyl alcohol/Si nanoparticle (NP) solutions for Li‐ion battery anode applications. Our Si‐rich carbon (SRC) NFs show many facilitated charge‐transport features and increased activities because of the continuous one‐dimensional (1D) carbon backbone structure with dispersed Si NP domains. This leads to superior battery performance compared to that of bare silicon NPs. The presence of carbon as 1D NFs can not only mitigate the volume change of silicon but also avoid the formation of an unstable solid‐electrolyte interface on the surface of silicon. Our study, regarding the optimum combination of C and Si in the NFs for their improved electrochemical properties and battery performance, reveals that SRC NFs containing 72.8 wt % Si (27.2 wt % C) exhibit an adequate balance between the high energy capacity of Si NPs and the dimensional stability and effective charge transport of carbon NFs. This optimum Si/C ratio leads to an outstanding cycle life, which maintains 1076 mAh g−1 capacity normalized by the total electrode mass, and a Coulombic efficiency of about 99 % over 50 cycles. Such scalable SRC NFs produced through the water‐based spinning approach can offer a cost‐effective development for high‐performance battery anodes. Spinning top: Silicon‐rich carbon nanofibers produced through water‐based spinning exhibit high energy capacity and good cycle ability in the Li‐ion battery anode application. They maintain a high surface area, accommodate severe volume changes within the carbon backbone, avoid the formation of unstable solid‐electrolyte interface layers on the surface of silicon, and ensure high electrical or electronic conductivity.</description><subject>Anodes</subject><subject>Backbone</subject><subject>Batteries</subject><subject>Battery</subject><subject>Carbon</subject><subject>electrospinning</subject><subject>Lithium-ion batteries</subject><subject>Nanofibers</subject><subject>nanostructures</subject><subject>polymers</subject><subject>Product design</subject><subject>Silicon</subject><subject>Spinning</subject><issn>2196-0216</issn><issn>2196-0216</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNqFkUFP3DAQhaOqSEXAtWdLvfSyy0wcnKS33YgC0goklopj5NgTMMraqZ0Vyq0_AfET-SV4tRQQF062x997Gr2XJN8RpgiQHirq1DQF5AAI_Euym2IpJpCi-Pru_i05COEOIoNwxAuxmzwuTWeUs0__Hi6NumWV9I2z7HRsvNHsXFrXmoZ8YK13K3YtB_IRnctAmi17Y62xN7_Y1S2x5WjJ34xsTsM9kWUvxkxa_d-1dZ4tTNSb-JjLIZqNbGadJjbr-4jLIf7sJzut7AIdvJx7yZ_fx1fV6WRxcXJWzRYTxYucT7RAzaUoGq6bIhMlllqnUirUqgDiCssCeApa6AIBN6M0z1Qm84xQ6uaI7yU_t769d3_XFIZ6ZULMsZOW3DrUmGdZHgNFjOiPD-idW3sbt4sUiFQIEBtquqWUdyF4auvem5X0Y41Qb1qqNy3Vry1FQbkV3JuOxk_oujpeVG_aZ6e9mLQ</recordid><startdate>20140103</startdate><enddate>20140103</enddate><creator>Kim, Yong Seok</creator><creator>Kim, Kyung Woo</creator><creator>Cho, Daehwan</creator><creator>Hansen, Nathaniel S.</creator><creator>Lee, Jinwoo</creator><creator>Joo, Yong Lak</creator><general>WILEY‐VCH Verlag</general><general>John Wiley &amp; Sons, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>7TB</scope><scope>7U5</scope><scope>FR3</scope><scope>L7M</scope></search><sort><creationdate>20140103</creationdate><title>Silicon‐Rich Carbon Hybrid Nanofibers from Water‐Based Spinning: The Synergy Between Silicon and Carbon for Li‐ion Battery Anode Application</title><author>Kim, Yong Seok ; Kim, Kyung Woo ; Cho, Daehwan ; Hansen, Nathaniel S. ; Lee, Jinwoo ; Joo, Yong Lak</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3873-d61d3a68b3db846919dd2aac1dc80e3c1980320d6d810180e3274c4a74e1adb53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Anodes</topic><topic>Backbone</topic><topic>Batteries</topic><topic>Battery</topic><topic>Carbon</topic><topic>electrospinning</topic><topic>Lithium-ion batteries</topic><topic>Nanofibers</topic><topic>nanostructures</topic><topic>polymers</topic><topic>Product design</topic><topic>Silicon</topic><topic>Spinning</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kim, Yong Seok</creatorcontrib><creatorcontrib>Kim, Kyung Woo</creatorcontrib><creatorcontrib>Cho, Daehwan</creatorcontrib><creatorcontrib>Hansen, Nathaniel S.</creatorcontrib><creatorcontrib>Lee, Jinwoo</creatorcontrib><creatorcontrib>Joo, Yong Lak</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>ChemElectroChem</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kim, Yong Seok</au><au>Kim, Kyung Woo</au><au>Cho, Daehwan</au><au>Hansen, Nathaniel S.</au><au>Lee, Jinwoo</au><au>Joo, Yong Lak</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Silicon‐Rich Carbon Hybrid Nanofibers from Water‐Based Spinning: The Synergy Between Silicon and Carbon for Li‐ion Battery Anode Application</atitle><jtitle>ChemElectroChem</jtitle><date>2014-01-03</date><risdate>2014</risdate><volume>1</volume><issue>1</issue><spage>220</spage><epage>226</epage><pages>220-226</pages><issn>2196-0216</issn><eissn>2196-0216</eissn><abstract>Hybrid carbon nanofibers (NFs) with extremely high Si loading (&gt;65 wt %) are fabricated through the water‐based electrospinning of polyvinyl alcohol/Si nanoparticle (NP) solutions for Li‐ion battery anode applications. Our Si‐rich carbon (SRC) NFs show many facilitated charge‐transport features and increased activities because of the continuous one‐dimensional (1D) carbon backbone structure with dispersed Si NP domains. This leads to superior battery performance compared to that of bare silicon NPs. The presence of carbon as 1D NFs can not only mitigate the volume change of silicon but also avoid the formation of an unstable solid‐electrolyte interface on the surface of silicon. Our study, regarding the optimum combination of C and Si in the NFs for their improved electrochemical properties and battery performance, reveals that SRC NFs containing 72.8 wt % Si (27.2 wt % C) exhibit an adequate balance between the high energy capacity of Si NPs and the dimensional stability and effective charge transport of carbon NFs. This optimum Si/C ratio leads to an outstanding cycle life, which maintains 1076 mAh g−1 capacity normalized by the total electrode mass, and a Coulombic efficiency of about 99 % over 50 cycles. Such scalable SRC NFs produced through the water‐based spinning approach can offer a cost‐effective development for high‐performance battery anodes. Spinning top: Silicon‐rich carbon nanofibers produced through water‐based spinning exhibit high energy capacity and good cycle ability in the Li‐ion battery anode application. They maintain a high surface area, accommodate severe volume changes within the carbon backbone, avoid the formation of unstable solid‐electrolyte interface layers on the surface of silicon, and ensure high electrical or electronic conductivity.</abstract><cop>Weinheim</cop><pub>WILEY‐VCH Verlag</pub><doi>10.1002/celc.201300103</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 2196-0216
ispartof ChemElectroChem, 2014-01, Vol.1 (1), p.220-226
issn 2196-0216
2196-0216
language eng
recordid cdi_proquest_miscellaneous_1744713011
source Wiley Online Library Journals Frontfile Complete
subjects Anodes
Backbone
Batteries
Battery
Carbon
electrospinning
Lithium-ion batteries
Nanofibers
nanostructures
polymers
Product design
Silicon
Spinning
title Silicon‐Rich Carbon Hybrid Nanofibers from Water‐Based Spinning: The Synergy Between Silicon and Carbon for Li‐ion Battery Anode Application
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T17%3A18%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Silicon%E2%80%90Rich%20Carbon%20Hybrid%20Nanofibers%20from%20Water%E2%80%90Based%20Spinning:%20The%20Synergy%20Between%20Silicon%20and%20Carbon%20for%20Li%E2%80%90ion%20Battery%20Anode%20Application&rft.jtitle=ChemElectroChem&rft.au=Kim,%20Yong%20Seok&rft.date=2014-01-03&rft.volume=1&rft.issue=1&rft.spage=220&rft.epage=226&rft.pages=220-226&rft.issn=2196-0216&rft.eissn=2196-0216&rft_id=info:doi/10.1002/celc.201300103&rft_dat=%3Cproquest_cross%3E1744713011%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1706266061&rft_id=info:pmid/&rfr_iscdi=true