Analysis of the efficiency of the census transform algorithm implemented on FPGA

Over the course of the last two decades, continuous advances in the stereo vision field have been documented. In this paper we present an analysis of the efficiency for the stereo vision algorithm of the Census Transform algorithm. In addition to the conventional correlation method based on Hamming...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Microprocessors and microsystems 2015-10, Vol.39 (7), p.494-503
Hauptverfasser: Tavera-Vaca, C.-A., Almanza-Ojeda, D.-L., Ibarra-Manzano, M.-A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 503
container_issue 7
container_start_page 494
container_title Microprocessors and microsystems
container_volume 39
creator Tavera-Vaca, C.-A.
Almanza-Ojeda, D.-L.
Ibarra-Manzano, M.-A.
description Over the course of the last two decades, continuous advances in the stereo vision field have been documented. In this paper we present an analysis of the efficiency for the stereo vision algorithm of the Census Transform algorithm. In addition to the conventional correlation method based on Hamming distance minimization, we use two similarity measures: the Tanimoto and the Dixon-Koehler distances. Then, we compare its performance in terms of accuracy and hardware resources needed for implementation. These comparisons are performed by introducing a generalized model for each hardware architecture, scalable depending on design parameters such as Census Transform window size and maximum disparity range.
doi_str_mv 10.1016/j.micpro.2015.08.002
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1744711764</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0141933115001155</els_id><sourcerecordid>1744711764</sourcerecordid><originalsourceid>FETCH-LOGICAL-c339t-2b9042b48ba274c16fa7c41c4a60e0d7d92f9b0795eaab3dcb1cd5b4182f39df3</originalsourceid><addsrcrecordid>eNp9kE1Lw0AYhBdRsFb_gYccvSS--5GPvQilaBUK9qDnZbN5125JsnU3FfrvTY1ePQ0MMwPzEHJLIaNAi_td1jmzDz5jQPMMqgyAnZEZrUqWSsGLczIDKmgqOaeX5CrGHQDkULAZ2Sx63R6ji4m3ybDFBK11xmFvjn-OwT4eYjIE3UfrQ5fo9sMHN2y7xHX7FjvsB2wS3ydPm9XimlxY3Ua8-dU5eX96fFs-p-vX1ctysU4N53JIWS1BsFpUtWalMLSwujSCGqELQGjKRjIrayhljlrXvDE1NU1eC1oxy2Vj-ZzcTbvj788DxkF1LhpsW92jP0RFSyFKSstCjFExRU3wMQa0ah9cp8NRUVAngGqnJoDqBFBBpUaAY-1hquF448thUPEHDDYuoBlU493_A9_kXHwi</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1744711764</pqid></control><display><type>article</type><title>Analysis of the efficiency of the census transform algorithm implemented on FPGA</title><source>Elsevier ScienceDirect Journals</source><creator>Tavera-Vaca, C.-A. ; Almanza-Ojeda, D.-L. ; Ibarra-Manzano, M.-A.</creator><creatorcontrib>Tavera-Vaca, C.-A. ; Almanza-Ojeda, D.-L. ; Ibarra-Manzano, M.-A.</creatorcontrib><description>Over the course of the last two decades, continuous advances in the stereo vision field have been documented. In this paper we present an analysis of the efficiency for the stereo vision algorithm of the Census Transform algorithm. In addition to the conventional correlation method based on Hamming distance minimization, we use two similarity measures: the Tanimoto and the Dixon-Koehler distances. Then, we compare its performance in terms of accuracy and hardware resources needed for implementation. These comparisons are performed by introducing a generalized model for each hardware architecture, scalable depending on design parameters such as Census Transform window size and maximum disparity range.</description><identifier>ISSN: 0141-9331</identifier><identifier>EISSN: 1872-9436</identifier><identifier>DOI: 10.1016/j.micpro.2015.08.002</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Algorithms ; Census ; Census transform ; Design parameters ; Dixon Koehler distance ; Field programmable gate arrays ; Hamming distance ; Hardware ; Optimization ; Similarity ; Stereo vision ; Tanimoto distance ; Transforms ; Vision</subject><ispartof>Microprocessors and microsystems, 2015-10, Vol.39 (7), p.494-503</ispartof><rights>2015 Elsevier B.V.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c339t-2b9042b48ba274c16fa7c41c4a60e0d7d92f9b0795eaab3dcb1cd5b4182f39df3</citedby><cites>FETCH-LOGICAL-c339t-2b9042b48ba274c16fa7c41c4a60e0d7d92f9b0795eaab3dcb1cd5b4182f39df3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0141933115001155$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65534</link.rule.ids></links><search><creatorcontrib>Tavera-Vaca, C.-A.</creatorcontrib><creatorcontrib>Almanza-Ojeda, D.-L.</creatorcontrib><creatorcontrib>Ibarra-Manzano, M.-A.</creatorcontrib><title>Analysis of the efficiency of the census transform algorithm implemented on FPGA</title><title>Microprocessors and microsystems</title><description>Over the course of the last two decades, continuous advances in the stereo vision field have been documented. In this paper we present an analysis of the efficiency for the stereo vision algorithm of the Census Transform algorithm. In addition to the conventional correlation method based on Hamming distance minimization, we use two similarity measures: the Tanimoto and the Dixon-Koehler distances. Then, we compare its performance in terms of accuracy and hardware resources needed for implementation. These comparisons are performed by introducing a generalized model for each hardware architecture, scalable depending on design parameters such as Census Transform window size and maximum disparity range.</description><subject>Algorithms</subject><subject>Census</subject><subject>Census transform</subject><subject>Design parameters</subject><subject>Dixon Koehler distance</subject><subject>Field programmable gate arrays</subject><subject>Hamming distance</subject><subject>Hardware</subject><subject>Optimization</subject><subject>Similarity</subject><subject>Stereo vision</subject><subject>Tanimoto distance</subject><subject>Transforms</subject><subject>Vision</subject><issn>0141-9331</issn><issn>1872-9436</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNp9kE1Lw0AYhBdRsFb_gYccvSS--5GPvQilaBUK9qDnZbN5125JsnU3FfrvTY1ePQ0MMwPzEHJLIaNAi_td1jmzDz5jQPMMqgyAnZEZrUqWSsGLczIDKmgqOaeX5CrGHQDkULAZ2Sx63R6ji4m3ybDFBK11xmFvjn-OwT4eYjIE3UfrQ5fo9sMHN2y7xHX7FjvsB2wS3ydPm9XimlxY3Ua8-dU5eX96fFs-p-vX1ctysU4N53JIWS1BsFpUtWalMLSwujSCGqELQGjKRjIrayhljlrXvDE1NU1eC1oxy2Vj-ZzcTbvj788DxkF1LhpsW92jP0RFSyFKSstCjFExRU3wMQa0ah9cp8NRUVAngGqnJoDqBFBBpUaAY-1hquF448thUPEHDDYuoBlU493_A9_kXHwi</recordid><startdate>20151001</startdate><enddate>20151001</enddate><creator>Tavera-Vaca, C.-A.</creator><creator>Almanza-Ojeda, D.-L.</creator><creator>Ibarra-Manzano, M.-A.</creator><general>Elsevier B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20151001</creationdate><title>Analysis of the efficiency of the census transform algorithm implemented on FPGA</title><author>Tavera-Vaca, C.-A. ; Almanza-Ojeda, D.-L. ; Ibarra-Manzano, M.-A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c339t-2b9042b48ba274c16fa7c41c4a60e0d7d92f9b0795eaab3dcb1cd5b4182f39df3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Algorithms</topic><topic>Census</topic><topic>Census transform</topic><topic>Design parameters</topic><topic>Dixon Koehler distance</topic><topic>Field programmable gate arrays</topic><topic>Hamming distance</topic><topic>Hardware</topic><topic>Optimization</topic><topic>Similarity</topic><topic>Stereo vision</topic><topic>Tanimoto distance</topic><topic>Transforms</topic><topic>Vision</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tavera-Vaca, C.-A.</creatorcontrib><creatorcontrib>Almanza-Ojeda, D.-L.</creatorcontrib><creatorcontrib>Ibarra-Manzano, M.-A.</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Microprocessors and microsystems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tavera-Vaca, C.-A.</au><au>Almanza-Ojeda, D.-L.</au><au>Ibarra-Manzano, M.-A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Analysis of the efficiency of the census transform algorithm implemented on FPGA</atitle><jtitle>Microprocessors and microsystems</jtitle><date>2015-10-01</date><risdate>2015</risdate><volume>39</volume><issue>7</issue><spage>494</spage><epage>503</epage><pages>494-503</pages><issn>0141-9331</issn><eissn>1872-9436</eissn><abstract>Over the course of the last two decades, continuous advances in the stereo vision field have been documented. In this paper we present an analysis of the efficiency for the stereo vision algorithm of the Census Transform algorithm. In addition to the conventional correlation method based on Hamming distance minimization, we use two similarity measures: the Tanimoto and the Dixon-Koehler distances. Then, we compare its performance in terms of accuracy and hardware resources needed for implementation. These comparisons are performed by introducing a generalized model for each hardware architecture, scalable depending on design parameters such as Census Transform window size and maximum disparity range.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.micpro.2015.08.002</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0141-9331
ispartof Microprocessors and microsystems, 2015-10, Vol.39 (7), p.494-503
issn 0141-9331
1872-9436
language eng
recordid cdi_proquest_miscellaneous_1744711764
source Elsevier ScienceDirect Journals
subjects Algorithms
Census
Census transform
Design parameters
Dixon Koehler distance
Field programmable gate arrays
Hamming distance
Hardware
Optimization
Similarity
Stereo vision
Tanimoto distance
Transforms
Vision
title Analysis of the efficiency of the census transform algorithm implemented on FPGA
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-15T13%3A37%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Analysis%20of%20the%20efficiency%20of%20the%20census%20transform%20algorithm%20implemented%20on%20FPGA&rft.jtitle=Microprocessors%20and%20microsystems&rft.au=Tavera-Vaca,%20C.-A.&rft.date=2015-10-01&rft.volume=39&rft.issue=7&rft.spage=494&rft.epage=503&rft.pages=494-503&rft.issn=0141-9331&rft.eissn=1872-9436&rft_id=info:doi/10.1016/j.micpro.2015.08.002&rft_dat=%3Cproquest_cross%3E1744711764%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1744711764&rft_id=info:pmid/&rft_els_id=S0141933115001155&rfr_iscdi=true