Modeling pitch trajectories in fastpitch softball

The fourth-order Runge–Kutta method is used to numerically integrate the equations of motion for a fastpitch softball pitch and to create a model from which the trajectories of drop balls, rise balls and curve balls can be computed and displayed. By requiring these pitches to pass through the strike...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Sports engineering 2015-09, Vol.18 (3), p.157-164
Hauptverfasser: Clark, Jean M., Greer, Meredith L., Semon, Mark D.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 164
container_issue 3
container_start_page 157
container_title Sports engineering
container_volume 18
creator Clark, Jean M.
Greer, Meredith L.
Semon, Mark D.
description The fourth-order Runge–Kutta method is used to numerically integrate the equations of motion for a fastpitch softball pitch and to create a model from which the trajectories of drop balls, rise balls and curve balls can be computed and displayed. By requiring these pitches to pass through the strike zone, and by assuming specific values for the initial speed, launch angle and height of each pitch, an upper limit on the lift coefficient can be predicted which agrees with experimental data. This approach also predicts the launch angles necessary to put rise balls, drop balls and curve balls in the strike zone, as well as a value of the drag coefficient that agrees with experimental data. Finally, Adair’s analysis of a batter’s swing is used to compare pitches that look similar to a batter starting her swing, yet which diverge before reaching the home plate, to predict when she is likely to miss or foul the ball.
doi_str_mv 10.1007/s12283-015-0176-4
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1744711443</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1712575617</sourcerecordid><originalsourceid>FETCH-LOGICAL-c424t-2a1f643b17f06b1a2cabe2a6bb404aa80d925ccff575266eba58d01300c51ea03</originalsourceid><addsrcrecordid>eNqNkE1PAyEQhonRxFr9Ad726AWdARa2R9P4ldR40TMBCnWb7VKBHvz30qxn44EMyTzvTOYh5BrhFgHUXUbGOk4B2_qUpOKEzFBIoEx26rT-uVxQBYqdk4uctwAoseMzgq9x7Yd-3DT7vrjPpiSz9a7E1Pvc9GMTTC5TJ8dQrBmGS3IWzJD91W-dk4_Hh_flM129Pb0s71fUCSYKZQaDFNyiCiAtGuaM9cxIawUIYzpYL1jrXAitapmU3pq2WwNyANeiN8Dn5Gaau0_x6-Bz0bs-Oz8MZvTxkDUqIRSiEPwfKLK6RqKqKE6oSzHn5IPep35n0rdG0EeTejKpq0l9NKlFzbApkys7bnzS23hIYz3-j9APQ6t1NQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1712575617</pqid></control><display><type>article</type><title>Modeling pitch trajectories in fastpitch softball</title><source>Springer Nature - Complete Springer Journals</source><creator>Clark, Jean M. ; Greer, Meredith L. ; Semon, Mark D.</creator><creatorcontrib>Clark, Jean M. ; Greer, Meredith L. ; Semon, Mark D.</creatorcontrib><description>The fourth-order Runge–Kutta method is used to numerically integrate the equations of motion for a fastpitch softball pitch and to create a model from which the trajectories of drop balls, rise balls and curve balls can be computed and displayed. By requiring these pitches to pass through the strike zone, and by assuming specific values for the initial speed, launch angle and height of each pitch, an upper limit on the lift coefficient can be predicted which agrees with experimental data. This approach also predicts the launch angles necessary to put rise balls, drop balls and curve balls in the strike zone, as well as a value of the drag coefficient that agrees with experimental data. Finally, Adair’s analysis of a batter’s swing is used to compare pitches that look similar to a batter starting her swing, yet which diverge before reaching the home plate, to predict when she is likely to miss or foul the ball.</description><identifier>ISSN: 1369-7072</identifier><identifier>EISSN: 1460-2687</identifier><identifier>DOI: 10.1007/s12283-015-0176-4</identifier><language>eng</language><publisher>London: Springer London</publisher><subject>Biomedical Engineering and Bioengineering ; Drag coefficients ; Engineering ; Engineering Design ; Equations of motion ; Launches ; Materials Science ; Mathematical models ; Original Article ; Rehabilitation Medicine ; Runge-Kutta method ; Sports Medicine ; Strikes ; Swing ; Theoretical and Applied Mechanics ; Trajectories</subject><ispartof>Sports engineering, 2015-09, Vol.18 (3), p.157-164</ispartof><rights>International Sports Engineering Association 2015</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c424t-2a1f643b17f06b1a2cabe2a6bb404aa80d925ccff575266eba58d01300c51ea03</citedby><cites>FETCH-LOGICAL-c424t-2a1f643b17f06b1a2cabe2a6bb404aa80d925ccff575266eba58d01300c51ea03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s12283-015-0176-4$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s12283-015-0176-4$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,41467,42536,51298</link.rule.ids></links><search><creatorcontrib>Clark, Jean M.</creatorcontrib><creatorcontrib>Greer, Meredith L.</creatorcontrib><creatorcontrib>Semon, Mark D.</creatorcontrib><title>Modeling pitch trajectories in fastpitch softball</title><title>Sports engineering</title><addtitle>Sports Eng</addtitle><description>The fourth-order Runge–Kutta method is used to numerically integrate the equations of motion for a fastpitch softball pitch and to create a model from which the trajectories of drop balls, rise balls and curve balls can be computed and displayed. By requiring these pitches to pass through the strike zone, and by assuming specific values for the initial speed, launch angle and height of each pitch, an upper limit on the lift coefficient can be predicted which agrees with experimental data. This approach also predicts the launch angles necessary to put rise balls, drop balls and curve balls in the strike zone, as well as a value of the drag coefficient that agrees with experimental data. Finally, Adair’s analysis of a batter’s swing is used to compare pitches that look similar to a batter starting her swing, yet which diverge before reaching the home plate, to predict when she is likely to miss or foul the ball.</description><subject>Biomedical Engineering and Bioengineering</subject><subject>Drag coefficients</subject><subject>Engineering</subject><subject>Engineering Design</subject><subject>Equations of motion</subject><subject>Launches</subject><subject>Materials Science</subject><subject>Mathematical models</subject><subject>Original Article</subject><subject>Rehabilitation Medicine</subject><subject>Runge-Kutta method</subject><subject>Sports Medicine</subject><subject>Strikes</subject><subject>Swing</subject><subject>Theoretical and Applied Mechanics</subject><subject>Trajectories</subject><issn>1369-7072</issn><issn>1460-2687</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNqNkE1PAyEQhonRxFr9Ad726AWdARa2R9P4ldR40TMBCnWb7VKBHvz30qxn44EMyTzvTOYh5BrhFgHUXUbGOk4B2_qUpOKEzFBIoEx26rT-uVxQBYqdk4uctwAoseMzgq9x7Yd-3DT7vrjPpiSz9a7E1Pvc9GMTTC5TJ8dQrBmGS3IWzJD91W-dk4_Hh_flM129Pb0s71fUCSYKZQaDFNyiCiAtGuaM9cxIawUIYzpYL1jrXAitapmU3pq2WwNyANeiN8Dn5Gaau0_x6-Bz0bs-Oz8MZvTxkDUqIRSiEPwfKLK6RqKqKE6oSzHn5IPep35n0rdG0EeTejKpq0l9NKlFzbApkys7bnzS23hIYz3-j9APQ6t1NQ</recordid><startdate>20150901</startdate><enddate>20150901</enddate><creator>Clark, Jean M.</creator><creator>Greer, Meredith L.</creator><creator>Semon, Mark D.</creator><general>Springer London</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TS</scope><scope>7TB</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>20150901</creationdate><title>Modeling pitch trajectories in fastpitch softball</title><author>Clark, Jean M. ; Greer, Meredith L. ; Semon, Mark D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c424t-2a1f643b17f06b1a2cabe2a6bb404aa80d925ccff575266eba58d01300c51ea03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Biomedical Engineering and Bioengineering</topic><topic>Drag coefficients</topic><topic>Engineering</topic><topic>Engineering Design</topic><topic>Equations of motion</topic><topic>Launches</topic><topic>Materials Science</topic><topic>Mathematical models</topic><topic>Original Article</topic><topic>Rehabilitation Medicine</topic><topic>Runge-Kutta method</topic><topic>Sports Medicine</topic><topic>Strikes</topic><topic>Swing</topic><topic>Theoretical and Applied Mechanics</topic><topic>Trajectories</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Clark, Jean M.</creatorcontrib><creatorcontrib>Greer, Meredith L.</creatorcontrib><creatorcontrib>Semon, Mark D.</creatorcontrib><collection>CrossRef</collection><collection>Physical Education Index</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><jtitle>Sports engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Clark, Jean M.</au><au>Greer, Meredith L.</au><au>Semon, Mark D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Modeling pitch trajectories in fastpitch softball</atitle><jtitle>Sports engineering</jtitle><stitle>Sports Eng</stitle><date>2015-09-01</date><risdate>2015</risdate><volume>18</volume><issue>3</issue><spage>157</spage><epage>164</epage><pages>157-164</pages><issn>1369-7072</issn><eissn>1460-2687</eissn><abstract>The fourth-order Runge–Kutta method is used to numerically integrate the equations of motion for a fastpitch softball pitch and to create a model from which the trajectories of drop balls, rise balls and curve balls can be computed and displayed. By requiring these pitches to pass through the strike zone, and by assuming specific values for the initial speed, launch angle and height of each pitch, an upper limit on the lift coefficient can be predicted which agrees with experimental data. This approach also predicts the launch angles necessary to put rise balls, drop balls and curve balls in the strike zone, as well as a value of the drag coefficient that agrees with experimental data. Finally, Adair’s analysis of a batter’s swing is used to compare pitches that look similar to a batter starting her swing, yet which diverge before reaching the home plate, to predict when she is likely to miss or foul the ball.</abstract><cop>London</cop><pub>Springer London</pub><doi>10.1007/s12283-015-0176-4</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1369-7072
ispartof Sports engineering, 2015-09, Vol.18 (3), p.157-164
issn 1369-7072
1460-2687
language eng
recordid cdi_proquest_miscellaneous_1744711443
source Springer Nature - Complete Springer Journals
subjects Biomedical Engineering and Bioengineering
Drag coefficients
Engineering
Engineering Design
Equations of motion
Launches
Materials Science
Mathematical models
Original Article
Rehabilitation Medicine
Runge-Kutta method
Sports Medicine
Strikes
Swing
Theoretical and Applied Mechanics
Trajectories
title Modeling pitch trajectories in fastpitch softball
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T18%3A36%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Modeling%20pitch%20trajectories%20in%20fastpitch%20softball&rft.jtitle=Sports%20engineering&rft.au=Clark,%20Jean%20M.&rft.date=2015-09-01&rft.volume=18&rft.issue=3&rft.spage=157&rft.epage=164&rft.pages=157-164&rft.issn=1369-7072&rft.eissn=1460-2687&rft_id=info:doi/10.1007/s12283-015-0176-4&rft_dat=%3Cproquest_cross%3E1712575617%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1712575617&rft_id=info:pmid/&rfr_iscdi=true