Solution of radiative inverse boundary design problem in a combined radiating-free convecting furnace

In this paper an inverse boundary design problem of combined natural convection–radiation is solved. The aim of this paper is to find the strength of heaters in a step-like enclosure to produce desired temperature and heat flux distribution on the design surface. The finite volume method for transit...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International communications in heat and mass transfer 2013-07, Vol.45, p.130-136
Hauptverfasser: Mosavati, B., Mosavati, M., Kowsary, F.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 136
container_issue
container_start_page 130
container_title International communications in heat and mass transfer
container_volume 45
creator Mosavati, B.
Mosavati, M.
Kowsary, F.
description In this paper an inverse boundary design problem of combined natural convection–radiation is solved. The aim of this paper is to find the strength of heaters in a step-like enclosure to produce desired temperature and heat flux distribution on the design surface. The finite volume method for transition flow (which causes a faster convergence) is used as the direct solver of the energy and momentum equations. The SIMPLE algorithm is utilized to satisfy pressure–velocity coupling in order to solve the free convection heat transfer. Also, the backward Monte Carlo method is employed in order to be able to compute the distribution factors and carry out the radiant exchange calculations. Finally, the goal function which is defined on the basis of square root error is minimized by means of conjugate gradients method. The effects of variation of range of parameters such as the Rayleigh number, temperature ratio, radiation conduction parameter and the emissivity coefficient of insulated surfaces on the relative root mean square and heat flux are investigated and results are compared. The results demonstrate the efficiency and the accuracy of the proposed method.
doi_str_mv 10.1016/j.icheatmasstransfer.2013.04.011
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1744708902</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S073519331300081X</els_id><sourcerecordid>1744708902</sourcerecordid><originalsourceid>FETCH-LOGICAL-c438t-d48f787534ab3aa777d5a9fb5c26e197423dc49dcc1332072bfd4729a58ccae73</originalsourceid><addsrcrecordid>eNqNkU1v1DAQhi0EEkvpf_AFqZcEf2Xt3EAVn6rEgfZsTexx8Sqxi52sxL-vV1u4cICTNfYz73jel5ArznrO-P7toY_uB8K6QK1rgVQDll4wLnumesb5M7LjRo8d49o8Jzum5dDxUcqX5FWtB8YYN9zsCH7P87bGnGgOtICPsMYj0piOWCrSKW_JQ_lFPdZ4n-hDydOMS3unQF1eppjQ_-5L910oiO2-dbtTTcNWEjh8TV4EmCtePp0X5O7jh9vrz93Nt09frt_fdE5Js3ZemaCNHqSCSQJorf0AY5gGJ_bIR62E9E6N3jkupWBaTMErLUYYjHOAWl6Qq7Nu--fPDetql1gdzjMkzFu1XCulmRmZ-Dc6cKn2hgvT0Hdn1JVca8FgH0pcmiuWM3sKwx7s32HYUxiWKdvCaBJvnqZBdTCHxrhY_-gIrQzT6rTA1zOHzaVjbCrVRUwOfSzNUutz_P-hj8PdrfE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1513468128</pqid></control><display><type>article</type><title>Solution of radiative inverse boundary design problem in a combined radiating-free convecting furnace</title><source>Elsevier ScienceDirect Journals</source><creator>Mosavati, B. ; Mosavati, M. ; Kowsary, F.</creator><creatorcontrib>Mosavati, B. ; Mosavati, M. ; Kowsary, F.</creatorcontrib><description>In this paper an inverse boundary design problem of combined natural convection–radiation is solved. The aim of this paper is to find the strength of heaters in a step-like enclosure to produce desired temperature and heat flux distribution on the design surface. The finite volume method for transition flow (which causes a faster convergence) is used as the direct solver of the energy and momentum equations. The SIMPLE algorithm is utilized to satisfy pressure–velocity coupling in order to solve the free convection heat transfer. Also, the backward Monte Carlo method is employed in order to be able to compute the distribution factors and carry out the radiant exchange calculations. Finally, the goal function which is defined on the basis of square root error is minimized by means of conjugate gradients method. The effects of variation of range of parameters such as the Rayleigh number, temperature ratio, radiation conduction parameter and the emissivity coefficient of insulated surfaces on the relative root mean square and heat flux are investigated and results are compared. The results demonstrate the efficiency and the accuracy of the proposed method.</description><identifier>ISSN: 0735-1933</identifier><identifier>EISSN: 1879-0178</identifier><identifier>DOI: 10.1016/j.icheatmasstransfer.2013.04.011</identifier><identifier>CODEN: IHMTDL</identifier><language>eng</language><publisher>Kidlington: Elsevier Ltd</publisher><subject>Algorithms ; Applied sciences ; Boundaries ; Conjugate gradients method ; Devices using thermal energy ; Energy ; Energy. Thermal use of fuels ; Exact sciences and technology ; Furnaces ; Heat flux ; Heat transfer ; Inverse ; Inverse problem ; Mathematical analysis ; Mathematical models ; Monte Carlo method ; Natural convection–radiation ; Roots</subject><ispartof>International communications in heat and mass transfer, 2013-07, Vol.45, p.130-136</ispartof><rights>2013 Elsevier Ltd</rights><rights>2014 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c438t-d48f787534ab3aa777d5a9fb5c26e197423dc49dcc1332072bfd4729a58ccae73</citedby><cites>FETCH-LOGICAL-c438t-d48f787534ab3aa777d5a9fb5c26e197423dc49dcc1332072bfd4729a58ccae73</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S073519331300081X$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27903,27904,65309</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=27480747$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Mosavati, B.</creatorcontrib><creatorcontrib>Mosavati, M.</creatorcontrib><creatorcontrib>Kowsary, F.</creatorcontrib><title>Solution of radiative inverse boundary design problem in a combined radiating-free convecting furnace</title><title>International communications in heat and mass transfer</title><description>In this paper an inverse boundary design problem of combined natural convection–radiation is solved. The aim of this paper is to find the strength of heaters in a step-like enclosure to produce desired temperature and heat flux distribution on the design surface. The finite volume method for transition flow (which causes a faster convergence) is used as the direct solver of the energy and momentum equations. The SIMPLE algorithm is utilized to satisfy pressure–velocity coupling in order to solve the free convection heat transfer. Also, the backward Monte Carlo method is employed in order to be able to compute the distribution factors and carry out the radiant exchange calculations. Finally, the goal function which is defined on the basis of square root error is minimized by means of conjugate gradients method. The effects of variation of range of parameters such as the Rayleigh number, temperature ratio, radiation conduction parameter and the emissivity coefficient of insulated surfaces on the relative root mean square and heat flux are investigated and results are compared. The results demonstrate the efficiency and the accuracy of the proposed method.</description><subject>Algorithms</subject><subject>Applied sciences</subject><subject>Boundaries</subject><subject>Conjugate gradients method</subject><subject>Devices using thermal energy</subject><subject>Energy</subject><subject>Energy. Thermal use of fuels</subject><subject>Exact sciences and technology</subject><subject>Furnaces</subject><subject>Heat flux</subject><subject>Heat transfer</subject><subject>Inverse</subject><subject>Inverse problem</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Monte Carlo method</subject><subject>Natural convection–radiation</subject><subject>Roots</subject><issn>0735-1933</issn><issn>1879-0178</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNqNkU1v1DAQhi0EEkvpf_AFqZcEf2Xt3EAVn6rEgfZsTexx8Sqxi52sxL-vV1u4cICTNfYz73jel5ArznrO-P7toY_uB8K6QK1rgVQDll4wLnumesb5M7LjRo8d49o8Jzum5dDxUcqX5FWtB8YYN9zsCH7P87bGnGgOtICPsMYj0piOWCrSKW_JQ_lFPdZ4n-hDydOMS3unQF1eppjQ_-5L910oiO2-dbtTTcNWEjh8TV4EmCtePp0X5O7jh9vrz93Nt09frt_fdE5Js3ZemaCNHqSCSQJorf0AY5gGJ_bIR62E9E6N3jkupWBaTMErLUYYjHOAWl6Qq7Nu--fPDetql1gdzjMkzFu1XCulmRmZ-Dc6cKn2hgvT0Hdn1JVca8FgH0pcmiuWM3sKwx7s32HYUxiWKdvCaBJvnqZBdTCHxrhY_-gIrQzT6rTA1zOHzaVjbCrVRUwOfSzNUutz_P-hj8PdrfE</recordid><startdate>20130701</startdate><enddate>20130701</enddate><creator>Mosavati, B.</creator><creator>Mosavati, M.</creator><creator>Kowsary, F.</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>KR7</scope><scope>L7M</scope></search><sort><creationdate>20130701</creationdate><title>Solution of radiative inverse boundary design problem in a combined radiating-free convecting furnace</title><author>Mosavati, B. ; Mosavati, M. ; Kowsary, F.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c438t-d48f787534ab3aa777d5a9fb5c26e197423dc49dcc1332072bfd4729a58ccae73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Algorithms</topic><topic>Applied sciences</topic><topic>Boundaries</topic><topic>Conjugate gradients method</topic><topic>Devices using thermal energy</topic><topic>Energy</topic><topic>Energy. Thermal use of fuels</topic><topic>Exact sciences and technology</topic><topic>Furnaces</topic><topic>Heat flux</topic><topic>Heat transfer</topic><topic>Inverse</topic><topic>Inverse problem</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Monte Carlo method</topic><topic>Natural convection–radiation</topic><topic>Roots</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mosavati, B.</creatorcontrib><creatorcontrib>Mosavati, M.</creatorcontrib><creatorcontrib>Kowsary, F.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>International communications in heat and mass transfer</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mosavati, B.</au><au>Mosavati, M.</au><au>Kowsary, F.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Solution of radiative inverse boundary design problem in a combined radiating-free convecting furnace</atitle><jtitle>International communications in heat and mass transfer</jtitle><date>2013-07-01</date><risdate>2013</risdate><volume>45</volume><spage>130</spage><epage>136</epage><pages>130-136</pages><issn>0735-1933</issn><eissn>1879-0178</eissn><coden>IHMTDL</coden><abstract>In this paper an inverse boundary design problem of combined natural convection–radiation is solved. The aim of this paper is to find the strength of heaters in a step-like enclosure to produce desired temperature and heat flux distribution on the design surface. The finite volume method for transition flow (which causes a faster convergence) is used as the direct solver of the energy and momentum equations. The SIMPLE algorithm is utilized to satisfy pressure–velocity coupling in order to solve the free convection heat transfer. Also, the backward Monte Carlo method is employed in order to be able to compute the distribution factors and carry out the radiant exchange calculations. Finally, the goal function which is defined on the basis of square root error is minimized by means of conjugate gradients method. The effects of variation of range of parameters such as the Rayleigh number, temperature ratio, radiation conduction parameter and the emissivity coefficient of insulated surfaces on the relative root mean square and heat flux are investigated and results are compared. The results demonstrate the efficiency and the accuracy of the proposed method.</abstract><cop>Kidlington</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.icheatmasstransfer.2013.04.011</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0735-1933
ispartof International communications in heat and mass transfer, 2013-07, Vol.45, p.130-136
issn 0735-1933
1879-0178
language eng
recordid cdi_proquest_miscellaneous_1744708902
source Elsevier ScienceDirect Journals
subjects Algorithms
Applied sciences
Boundaries
Conjugate gradients method
Devices using thermal energy
Energy
Energy. Thermal use of fuels
Exact sciences and technology
Furnaces
Heat flux
Heat transfer
Inverse
Inverse problem
Mathematical analysis
Mathematical models
Monte Carlo method
Natural convection–radiation
Roots
title Solution of radiative inverse boundary design problem in a combined radiating-free convecting furnace
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T22%3A17%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Solution%20of%20radiative%20inverse%20boundary%20design%20problem%20in%20a%20combined%20radiating-free%20convecting%20furnace&rft.jtitle=International%20communications%20in%20heat%20and%20mass%20transfer&rft.au=Mosavati,%20B.&rft.date=2013-07-01&rft.volume=45&rft.spage=130&rft.epage=136&rft.pages=130-136&rft.issn=0735-1933&rft.eissn=1879-0178&rft.coden=IHMTDL&rft_id=info:doi/10.1016/j.icheatmasstransfer.2013.04.011&rft_dat=%3Cproquest_cross%3E1744708902%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1513468128&rft_id=info:pmid/&rft_els_id=S073519331300081X&rfr_iscdi=true