Solution of radiative inverse boundary design problem in a combined radiating-free convecting furnace
In this paper an inverse boundary design problem of combined natural convection–radiation is solved. The aim of this paper is to find the strength of heaters in a step-like enclosure to produce desired temperature and heat flux distribution on the design surface. The finite volume method for transit...
Gespeichert in:
Veröffentlicht in: | International communications in heat and mass transfer 2013-07, Vol.45, p.130-136 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 136 |
---|---|
container_issue | |
container_start_page | 130 |
container_title | International communications in heat and mass transfer |
container_volume | 45 |
creator | Mosavati, B. Mosavati, M. Kowsary, F. |
description | In this paper an inverse boundary design problem of combined natural convection–radiation is solved. The aim of this paper is to find the strength of heaters in a step-like enclosure to produce desired temperature and heat flux distribution on the design surface. The finite volume method for transition flow (which causes a faster convergence) is used as the direct solver of the energy and momentum equations. The SIMPLE algorithm is utilized to satisfy pressure–velocity coupling in order to solve the free convection heat transfer. Also, the backward Monte Carlo method is employed in order to be able to compute the distribution factors and carry out the radiant exchange calculations. Finally, the goal function which is defined on the basis of square root error is minimized by means of conjugate gradients method. The effects of variation of range of parameters such as the Rayleigh number, temperature ratio, radiation conduction parameter and the emissivity coefficient of insulated surfaces on the relative root mean square and heat flux are investigated and results are compared. The results demonstrate the efficiency and the accuracy of the proposed method. |
doi_str_mv | 10.1016/j.icheatmasstransfer.2013.04.011 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1744708902</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S073519331300081X</els_id><sourcerecordid>1744708902</sourcerecordid><originalsourceid>FETCH-LOGICAL-c438t-d48f787534ab3aa777d5a9fb5c26e197423dc49dcc1332072bfd4729a58ccae73</originalsourceid><addsrcrecordid>eNqNkU1v1DAQhi0EEkvpf_AFqZcEf2Xt3EAVn6rEgfZsTexx8Sqxi52sxL-vV1u4cICTNfYz73jel5ArznrO-P7toY_uB8K6QK1rgVQDll4wLnumesb5M7LjRo8d49o8Jzum5dDxUcqX5FWtB8YYN9zsCH7P87bGnGgOtICPsMYj0piOWCrSKW_JQ_lFPdZ4n-hDydOMS3unQF1eppjQ_-5L910oiO2-dbtTTcNWEjh8TV4EmCtePp0X5O7jh9vrz93Nt09frt_fdE5Js3ZemaCNHqSCSQJorf0AY5gGJ_bIR62E9E6N3jkupWBaTMErLUYYjHOAWl6Qq7Nu--fPDetql1gdzjMkzFu1XCulmRmZ-Dc6cKn2hgvT0Hdn1JVca8FgH0pcmiuWM3sKwx7s32HYUxiWKdvCaBJvnqZBdTCHxrhY_-gIrQzT6rTA1zOHzaVjbCrVRUwOfSzNUutz_P-hj8PdrfE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1513468128</pqid></control><display><type>article</type><title>Solution of radiative inverse boundary design problem in a combined radiating-free convecting furnace</title><source>Elsevier ScienceDirect Journals</source><creator>Mosavati, B. ; Mosavati, M. ; Kowsary, F.</creator><creatorcontrib>Mosavati, B. ; Mosavati, M. ; Kowsary, F.</creatorcontrib><description>In this paper an inverse boundary design problem of combined natural convection–radiation is solved. The aim of this paper is to find the strength of heaters in a step-like enclosure to produce desired temperature and heat flux distribution on the design surface. The finite volume method for transition flow (which causes a faster convergence) is used as the direct solver of the energy and momentum equations. The SIMPLE algorithm is utilized to satisfy pressure–velocity coupling in order to solve the free convection heat transfer. Also, the backward Monte Carlo method is employed in order to be able to compute the distribution factors and carry out the radiant exchange calculations. Finally, the goal function which is defined on the basis of square root error is minimized by means of conjugate gradients method. The effects of variation of range of parameters such as the Rayleigh number, temperature ratio, radiation conduction parameter and the emissivity coefficient of insulated surfaces on the relative root mean square and heat flux are investigated and results are compared. The results demonstrate the efficiency and the accuracy of the proposed method.</description><identifier>ISSN: 0735-1933</identifier><identifier>EISSN: 1879-0178</identifier><identifier>DOI: 10.1016/j.icheatmasstransfer.2013.04.011</identifier><identifier>CODEN: IHMTDL</identifier><language>eng</language><publisher>Kidlington: Elsevier Ltd</publisher><subject>Algorithms ; Applied sciences ; Boundaries ; Conjugate gradients method ; Devices using thermal energy ; Energy ; Energy. Thermal use of fuels ; Exact sciences and technology ; Furnaces ; Heat flux ; Heat transfer ; Inverse ; Inverse problem ; Mathematical analysis ; Mathematical models ; Monte Carlo method ; Natural convection–radiation ; Roots</subject><ispartof>International communications in heat and mass transfer, 2013-07, Vol.45, p.130-136</ispartof><rights>2013 Elsevier Ltd</rights><rights>2014 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c438t-d48f787534ab3aa777d5a9fb5c26e197423dc49dcc1332072bfd4729a58ccae73</citedby><cites>FETCH-LOGICAL-c438t-d48f787534ab3aa777d5a9fb5c26e197423dc49dcc1332072bfd4729a58ccae73</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S073519331300081X$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27903,27904,65309</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=27480747$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Mosavati, B.</creatorcontrib><creatorcontrib>Mosavati, M.</creatorcontrib><creatorcontrib>Kowsary, F.</creatorcontrib><title>Solution of radiative inverse boundary design problem in a combined radiating-free convecting furnace</title><title>International communications in heat and mass transfer</title><description>In this paper an inverse boundary design problem of combined natural convection–radiation is solved. The aim of this paper is to find the strength of heaters in a step-like enclosure to produce desired temperature and heat flux distribution on the design surface. The finite volume method for transition flow (which causes a faster convergence) is used as the direct solver of the energy and momentum equations. The SIMPLE algorithm is utilized to satisfy pressure–velocity coupling in order to solve the free convection heat transfer. Also, the backward Monte Carlo method is employed in order to be able to compute the distribution factors and carry out the radiant exchange calculations. Finally, the goal function which is defined on the basis of square root error is minimized by means of conjugate gradients method. The effects of variation of range of parameters such as the Rayleigh number, temperature ratio, radiation conduction parameter and the emissivity coefficient of insulated surfaces on the relative root mean square and heat flux are investigated and results are compared. The results demonstrate the efficiency and the accuracy of the proposed method.</description><subject>Algorithms</subject><subject>Applied sciences</subject><subject>Boundaries</subject><subject>Conjugate gradients method</subject><subject>Devices using thermal energy</subject><subject>Energy</subject><subject>Energy. Thermal use of fuels</subject><subject>Exact sciences and technology</subject><subject>Furnaces</subject><subject>Heat flux</subject><subject>Heat transfer</subject><subject>Inverse</subject><subject>Inverse problem</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Monte Carlo method</subject><subject>Natural convection–radiation</subject><subject>Roots</subject><issn>0735-1933</issn><issn>1879-0178</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNqNkU1v1DAQhi0EEkvpf_AFqZcEf2Xt3EAVn6rEgfZsTexx8Sqxi52sxL-vV1u4cICTNfYz73jel5ArznrO-P7toY_uB8K6QK1rgVQDll4wLnumesb5M7LjRo8d49o8Jzum5dDxUcqX5FWtB8YYN9zsCH7P87bGnGgOtICPsMYj0piOWCrSKW_JQ_lFPdZ4n-hDydOMS3unQF1eppjQ_-5L910oiO2-dbtTTcNWEjh8TV4EmCtePp0X5O7jh9vrz93Nt09frt_fdE5Js3ZemaCNHqSCSQJorf0AY5gGJ_bIR62E9E6N3jkupWBaTMErLUYYjHOAWl6Qq7Nu--fPDetql1gdzjMkzFu1XCulmRmZ-Dc6cKn2hgvT0Hdn1JVca8FgH0pcmiuWM3sKwx7s32HYUxiWKdvCaBJvnqZBdTCHxrhY_-gIrQzT6rTA1zOHzaVjbCrVRUwOfSzNUutz_P-hj8PdrfE</recordid><startdate>20130701</startdate><enddate>20130701</enddate><creator>Mosavati, B.</creator><creator>Mosavati, M.</creator><creator>Kowsary, F.</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>KR7</scope><scope>L7M</scope></search><sort><creationdate>20130701</creationdate><title>Solution of radiative inverse boundary design problem in a combined radiating-free convecting furnace</title><author>Mosavati, B. ; Mosavati, M. ; Kowsary, F.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c438t-d48f787534ab3aa777d5a9fb5c26e197423dc49dcc1332072bfd4729a58ccae73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Algorithms</topic><topic>Applied sciences</topic><topic>Boundaries</topic><topic>Conjugate gradients method</topic><topic>Devices using thermal energy</topic><topic>Energy</topic><topic>Energy. Thermal use of fuels</topic><topic>Exact sciences and technology</topic><topic>Furnaces</topic><topic>Heat flux</topic><topic>Heat transfer</topic><topic>Inverse</topic><topic>Inverse problem</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Monte Carlo method</topic><topic>Natural convection–radiation</topic><topic>Roots</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mosavati, B.</creatorcontrib><creatorcontrib>Mosavati, M.</creatorcontrib><creatorcontrib>Kowsary, F.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>International communications in heat and mass transfer</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mosavati, B.</au><au>Mosavati, M.</au><au>Kowsary, F.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Solution of radiative inverse boundary design problem in a combined radiating-free convecting furnace</atitle><jtitle>International communications in heat and mass transfer</jtitle><date>2013-07-01</date><risdate>2013</risdate><volume>45</volume><spage>130</spage><epage>136</epage><pages>130-136</pages><issn>0735-1933</issn><eissn>1879-0178</eissn><coden>IHMTDL</coden><abstract>In this paper an inverse boundary design problem of combined natural convection–radiation is solved. The aim of this paper is to find the strength of heaters in a step-like enclosure to produce desired temperature and heat flux distribution on the design surface. The finite volume method for transition flow (which causes a faster convergence) is used as the direct solver of the energy and momentum equations. The SIMPLE algorithm is utilized to satisfy pressure–velocity coupling in order to solve the free convection heat transfer. Also, the backward Monte Carlo method is employed in order to be able to compute the distribution factors and carry out the radiant exchange calculations. Finally, the goal function which is defined on the basis of square root error is minimized by means of conjugate gradients method. The effects of variation of range of parameters such as the Rayleigh number, temperature ratio, radiation conduction parameter and the emissivity coefficient of insulated surfaces on the relative root mean square and heat flux are investigated and results are compared. The results demonstrate the efficiency and the accuracy of the proposed method.</abstract><cop>Kidlington</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.icheatmasstransfer.2013.04.011</doi><tpages>7</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0735-1933 |
ispartof | International communications in heat and mass transfer, 2013-07, Vol.45, p.130-136 |
issn | 0735-1933 1879-0178 |
language | eng |
recordid | cdi_proquest_miscellaneous_1744708902 |
source | Elsevier ScienceDirect Journals |
subjects | Algorithms Applied sciences Boundaries Conjugate gradients method Devices using thermal energy Energy Energy. Thermal use of fuels Exact sciences and technology Furnaces Heat flux Heat transfer Inverse Inverse problem Mathematical analysis Mathematical models Monte Carlo method Natural convection–radiation Roots |
title | Solution of radiative inverse boundary design problem in a combined radiating-free convecting furnace |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T22%3A17%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Solution%20of%20radiative%20inverse%20boundary%20design%20problem%20in%20a%20combined%20radiating-free%20convecting%20furnace&rft.jtitle=International%20communications%20in%20heat%20and%20mass%20transfer&rft.au=Mosavati,%20B.&rft.date=2013-07-01&rft.volume=45&rft.spage=130&rft.epage=136&rft.pages=130-136&rft.issn=0735-1933&rft.eissn=1879-0178&rft.coden=IHMTDL&rft_id=info:doi/10.1016/j.icheatmasstransfer.2013.04.011&rft_dat=%3Cproquest_cross%3E1744708902%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1513468128&rft_id=info:pmid/&rft_els_id=S073519331300081X&rfr_iscdi=true |