Molecular‐Scale Imaging of Water Near Charged Surfaces

The orientation of water molecules on water bilayers is investigated on Cu(111) by a combination of scanning tunneling microscopy and density functional theory. Theory predicts that the application of a field reorients the adsorbed water molecules at a distance of close to a nanometer from the surfa...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ChemElectroChem 2014-02, Vol.1 (2), p.431-435
Hauptverfasser: Mehlhorn, Michael, Schnur, Sebastian, Groß, Axel, Morgenstern, Karina
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 435
container_issue 2
container_start_page 431
container_title ChemElectroChem
container_volume 1
creator Mehlhorn, Michael
Schnur, Sebastian
Groß, Axel
Morgenstern, Karina
description The orientation of water molecules on water bilayers is investigated on Cu(111) by a combination of scanning tunneling microscopy and density functional theory. Theory predicts that the application of a field reorients the adsorbed water molecules at a distance of close to a nanometer from the surface. Experimental evidence is presented for this prediction. Furthermore, the process differs strongly between adsorption on two and on three ordered layers. We propose that these results give insight into the behavior of the diffusive layer close to electrodes. So simple? Since the basic idea of ultrahigh‐vacuum (UHV) electrochemical modeling emerged, it has been claimed that UHV model experiments are too simple because they do not include the electrode potential. This combined scanning tunneling microscopy and density functional theory study gives insight into the influence of the electric field on single molecules in the diffusive layer. A field reorients adsorbed water molecules on water bilayers on Cu(111) at a distance of about 1 nm from the surface.
doi_str_mv 10.1002/celc.201300063
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1744708158</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3786351071</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3873-bbc4ee140c79d4d9a971fd0ff24056f66cd030a2a79b537c37c5446a60f6aa293</originalsourceid><addsrcrecordid>eNqFkM9KAzEQh4MoWGqvnhe8eNk6-bPZ7FGWqoWqhyoewzSb1C3bbk26SG8-gs_ok5hSUfEiDMwcvt8w8xFySmFIAdiFsY0ZMqAcACQ_ID1GC5kCo_Lw13xMBiEsIkIpZFzJHlG3bWNN16D_eHufGmxsMl7ivF7Nk9YlT7ixPrmz6JPyGf3cVsm08w6NDSfkyGET7OCr98nj1eihvEkn99fj8nKSGq5yns5mRlhLBZi8qERVYJFTV4FzTEAmnZSmAg7IMC9mGc9NrEwIiRKcRGQF75Pz_d61b186GzZ6WYf4bYMr23ZB01yIHBTNVETP_qCLtvOreF2kQDKpMiUjNdxTxrcheOv02tdL9FtNQe9c6p1L_e0yBop94LVu7PYfWpejSfmT_QSkm3ZD</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1706268586</pqid></control><display><type>article</type><title>Molecular‐Scale Imaging of Water Near Charged Surfaces</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Mehlhorn, Michael ; Schnur, Sebastian ; Groß, Axel ; Morgenstern, Karina</creator><creatorcontrib>Mehlhorn, Michael ; Schnur, Sebastian ; Groß, Axel ; Morgenstern, Karina</creatorcontrib><description>The orientation of water molecules on water bilayers is investigated on Cu(111) by a combination of scanning tunneling microscopy and density functional theory. Theory predicts that the application of a field reorients the adsorbed water molecules at a distance of close to a nanometer from the surface. Experimental evidence is presented for this prediction. Furthermore, the process differs strongly between adsorption on two and on three ordered layers. We propose that these results give insight into the behavior of the diffusive layer close to electrodes. So simple? Since the basic idea of ultrahigh‐vacuum (UHV) electrochemical modeling emerged, it has been claimed that UHV model experiments are too simple because they do not include the electrode potential. This combined scanning tunneling microscopy and density functional theory study gives insight into the influence of the electric field on single molecules in the diffusive layer. A field reorients adsorbed water molecules on water bilayers on Cu(111) at a distance of about 1 nm from the surface.</description><identifier>ISSN: 2196-0216</identifier><identifier>EISSN: 2196-0216</identifier><identifier>DOI: 10.1002/celc.201300063</identifier><language>eng</language><publisher>Weinheim: WILEY‐VCH Verlag</publisher><subject>Adsorption ; Charging ; density functional calculations ; Density functional theory ; Diffusion ; Diffusion layers ; Electrodes ; Mathematical models ; scanning probe microscopy ; Scanning tunneling microscopy ; single‐molecule studies ; Surface chemistry ; water</subject><ispartof>ChemElectroChem, 2014-02, Vol.1 (2), p.431-435</ispartof><rights>Copyright © 2014 WILEY‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><rights>Copyright © 2014 WILEY-VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3873-bbc4ee140c79d4d9a971fd0ff24056f66cd030a2a79b537c37c5446a60f6aa293</citedby><cites>FETCH-LOGICAL-c3873-bbc4ee140c79d4d9a971fd0ff24056f66cd030a2a79b537c37c5446a60f6aa293</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fcelc.201300063$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fcelc.201300063$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Mehlhorn, Michael</creatorcontrib><creatorcontrib>Schnur, Sebastian</creatorcontrib><creatorcontrib>Groß, Axel</creatorcontrib><creatorcontrib>Morgenstern, Karina</creatorcontrib><title>Molecular‐Scale Imaging of Water Near Charged Surfaces</title><title>ChemElectroChem</title><description>The orientation of water molecules on water bilayers is investigated on Cu(111) by a combination of scanning tunneling microscopy and density functional theory. Theory predicts that the application of a field reorients the adsorbed water molecules at a distance of close to a nanometer from the surface. Experimental evidence is presented for this prediction. Furthermore, the process differs strongly between adsorption on two and on three ordered layers. We propose that these results give insight into the behavior of the diffusive layer close to electrodes. So simple? Since the basic idea of ultrahigh‐vacuum (UHV) electrochemical modeling emerged, it has been claimed that UHV model experiments are too simple because they do not include the electrode potential. This combined scanning tunneling microscopy and density functional theory study gives insight into the influence of the electric field on single molecules in the diffusive layer. A field reorients adsorbed water molecules on water bilayers on Cu(111) at a distance of about 1 nm from the surface.</description><subject>Adsorption</subject><subject>Charging</subject><subject>density functional calculations</subject><subject>Density functional theory</subject><subject>Diffusion</subject><subject>Diffusion layers</subject><subject>Electrodes</subject><subject>Mathematical models</subject><subject>scanning probe microscopy</subject><subject>Scanning tunneling microscopy</subject><subject>single‐molecule studies</subject><subject>Surface chemistry</subject><subject>water</subject><issn>2196-0216</issn><issn>2196-0216</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNqFkM9KAzEQh4MoWGqvnhe8eNk6-bPZ7FGWqoWqhyoewzSb1C3bbk26SG8-gs_ok5hSUfEiDMwcvt8w8xFySmFIAdiFsY0ZMqAcACQ_ID1GC5kCo_Lw13xMBiEsIkIpZFzJHlG3bWNN16D_eHufGmxsMl7ivF7Nk9YlT7ixPrmz6JPyGf3cVsm08w6NDSfkyGET7OCr98nj1eihvEkn99fj8nKSGq5yns5mRlhLBZi8qERVYJFTV4FzTEAmnZSmAg7IMC9mGc9NrEwIiRKcRGQF75Pz_d61b186GzZ6WYf4bYMr23ZB01yIHBTNVETP_qCLtvOreF2kQDKpMiUjNdxTxrcheOv02tdL9FtNQe9c6p1L_e0yBop94LVu7PYfWpejSfmT_QSkm3ZD</recordid><startdate>20140211</startdate><enddate>20140211</enddate><creator>Mehlhorn, Michael</creator><creator>Schnur, Sebastian</creator><creator>Groß, Axel</creator><creator>Morgenstern, Karina</creator><general>WILEY‐VCH Verlag</general><general>John Wiley &amp; Sons, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>20140211</creationdate><title>Molecular‐Scale Imaging of Water Near Charged Surfaces</title><author>Mehlhorn, Michael ; Schnur, Sebastian ; Groß, Axel ; Morgenstern, Karina</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3873-bbc4ee140c79d4d9a971fd0ff24056f66cd030a2a79b537c37c5446a60f6aa293</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Adsorption</topic><topic>Charging</topic><topic>density functional calculations</topic><topic>Density functional theory</topic><topic>Diffusion</topic><topic>Diffusion layers</topic><topic>Electrodes</topic><topic>Mathematical models</topic><topic>scanning probe microscopy</topic><topic>Scanning tunneling microscopy</topic><topic>single‐molecule studies</topic><topic>Surface chemistry</topic><topic>water</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mehlhorn, Michael</creatorcontrib><creatorcontrib>Schnur, Sebastian</creatorcontrib><creatorcontrib>Groß, Axel</creatorcontrib><creatorcontrib>Morgenstern, Karina</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>ChemElectroChem</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mehlhorn, Michael</au><au>Schnur, Sebastian</au><au>Groß, Axel</au><au>Morgenstern, Karina</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Molecular‐Scale Imaging of Water Near Charged Surfaces</atitle><jtitle>ChemElectroChem</jtitle><date>2014-02-11</date><risdate>2014</risdate><volume>1</volume><issue>2</issue><spage>431</spage><epage>435</epage><pages>431-435</pages><issn>2196-0216</issn><eissn>2196-0216</eissn><abstract>The orientation of water molecules on water bilayers is investigated on Cu(111) by a combination of scanning tunneling microscopy and density functional theory. Theory predicts that the application of a field reorients the adsorbed water molecules at a distance of close to a nanometer from the surface. Experimental evidence is presented for this prediction. Furthermore, the process differs strongly between adsorption on two and on three ordered layers. We propose that these results give insight into the behavior of the diffusive layer close to electrodes. So simple? Since the basic idea of ultrahigh‐vacuum (UHV) electrochemical modeling emerged, it has been claimed that UHV model experiments are too simple because they do not include the electrode potential. This combined scanning tunneling microscopy and density functional theory study gives insight into the influence of the electric field on single molecules in the diffusive layer. A field reorients adsorbed water molecules on water bilayers on Cu(111) at a distance of about 1 nm from the surface.</abstract><cop>Weinheim</cop><pub>WILEY‐VCH Verlag</pub><doi>10.1002/celc.201300063</doi><tpages>5</tpages></addata></record>
fulltext fulltext
identifier ISSN: 2196-0216
ispartof ChemElectroChem, 2014-02, Vol.1 (2), p.431-435
issn 2196-0216
2196-0216
language eng
recordid cdi_proquest_miscellaneous_1744708158
source Wiley Online Library Journals Frontfile Complete
subjects Adsorption
Charging
density functional calculations
Density functional theory
Diffusion
Diffusion layers
Electrodes
Mathematical models
scanning probe microscopy
Scanning tunneling microscopy
single‐molecule studies
Surface chemistry
water
title Molecular‐Scale Imaging of Water Near Charged Surfaces
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T14%3A35%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Molecular%E2%80%90Scale%20Imaging%20of%20Water%20Near%20Charged%20Surfaces&rft.jtitle=ChemElectroChem&rft.au=Mehlhorn,%20Michael&rft.date=2014-02-11&rft.volume=1&rft.issue=2&rft.spage=431&rft.epage=435&rft.pages=431-435&rft.issn=2196-0216&rft.eissn=2196-0216&rft_id=info:doi/10.1002/celc.201300063&rft_dat=%3Cproquest_cross%3E3786351071%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1706268586&rft_id=info:pmid/&rfr_iscdi=true