Molecular‐Scale Imaging of Water Near Charged Surfaces
The orientation of water molecules on water bilayers is investigated on Cu(111) by a combination of scanning tunneling microscopy and density functional theory. Theory predicts that the application of a field reorients the adsorbed water molecules at a distance of close to a nanometer from the surfa...
Gespeichert in:
Veröffentlicht in: | ChemElectroChem 2014-02, Vol.1 (2), p.431-435 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 435 |
---|---|
container_issue | 2 |
container_start_page | 431 |
container_title | ChemElectroChem |
container_volume | 1 |
creator | Mehlhorn, Michael Schnur, Sebastian Groß, Axel Morgenstern, Karina |
description | The orientation of water molecules on water bilayers is investigated on Cu(111) by a combination of scanning tunneling microscopy and density functional theory. Theory predicts that the application of a field reorients the adsorbed water molecules at a distance of close to a nanometer from the surface. Experimental evidence is presented for this prediction. Furthermore, the process differs strongly between adsorption on two and on three ordered layers. We propose that these results give insight into the behavior of the diffusive layer close to electrodes.
So simple? Since the basic idea of ultrahigh‐vacuum (UHV) electrochemical modeling emerged, it has been claimed that UHV model experiments are too simple because they do not include the electrode potential. This combined scanning tunneling microscopy and density functional theory study gives insight into the influence of the electric field on single molecules in the diffusive layer. A field reorients adsorbed water molecules on water bilayers on Cu(111) at a distance of about 1 nm from the surface. |
doi_str_mv | 10.1002/celc.201300063 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1744708158</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3786351071</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3873-bbc4ee140c79d4d9a971fd0ff24056f66cd030a2a79b537c37c5446a60f6aa293</originalsourceid><addsrcrecordid>eNqFkM9KAzEQh4MoWGqvnhe8eNk6-bPZ7FGWqoWqhyoewzSb1C3bbk26SG8-gs_ok5hSUfEiDMwcvt8w8xFySmFIAdiFsY0ZMqAcACQ_ID1GC5kCo_Lw13xMBiEsIkIpZFzJHlG3bWNN16D_eHufGmxsMl7ivF7Nk9YlT7ixPrmz6JPyGf3cVsm08w6NDSfkyGET7OCr98nj1eihvEkn99fj8nKSGq5yns5mRlhLBZi8qERVYJFTV4FzTEAmnZSmAg7IMC9mGc9NrEwIiRKcRGQF75Pz_d61b186GzZ6WYf4bYMr23ZB01yIHBTNVETP_qCLtvOreF2kQDKpMiUjNdxTxrcheOv02tdL9FtNQe9c6p1L_e0yBop94LVu7PYfWpejSfmT_QSkm3ZD</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1706268586</pqid></control><display><type>article</type><title>Molecular‐Scale Imaging of Water Near Charged Surfaces</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Mehlhorn, Michael ; Schnur, Sebastian ; Groß, Axel ; Morgenstern, Karina</creator><creatorcontrib>Mehlhorn, Michael ; Schnur, Sebastian ; Groß, Axel ; Morgenstern, Karina</creatorcontrib><description>The orientation of water molecules on water bilayers is investigated on Cu(111) by a combination of scanning tunneling microscopy and density functional theory. Theory predicts that the application of a field reorients the adsorbed water molecules at a distance of close to a nanometer from the surface. Experimental evidence is presented for this prediction. Furthermore, the process differs strongly between adsorption on two and on three ordered layers. We propose that these results give insight into the behavior of the diffusive layer close to electrodes.
So simple? Since the basic idea of ultrahigh‐vacuum (UHV) electrochemical modeling emerged, it has been claimed that UHV model experiments are too simple because they do not include the electrode potential. This combined scanning tunneling microscopy and density functional theory study gives insight into the influence of the electric field on single molecules in the diffusive layer. A field reorients adsorbed water molecules on water bilayers on Cu(111) at a distance of about 1 nm from the surface.</description><identifier>ISSN: 2196-0216</identifier><identifier>EISSN: 2196-0216</identifier><identifier>DOI: 10.1002/celc.201300063</identifier><language>eng</language><publisher>Weinheim: WILEY‐VCH Verlag</publisher><subject>Adsorption ; Charging ; density functional calculations ; Density functional theory ; Diffusion ; Diffusion layers ; Electrodes ; Mathematical models ; scanning probe microscopy ; Scanning tunneling microscopy ; single‐molecule studies ; Surface chemistry ; water</subject><ispartof>ChemElectroChem, 2014-02, Vol.1 (2), p.431-435</ispartof><rights>Copyright © 2014 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim</rights><rights>Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3873-bbc4ee140c79d4d9a971fd0ff24056f66cd030a2a79b537c37c5446a60f6aa293</citedby><cites>FETCH-LOGICAL-c3873-bbc4ee140c79d4d9a971fd0ff24056f66cd030a2a79b537c37c5446a60f6aa293</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fcelc.201300063$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fcelc.201300063$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Mehlhorn, Michael</creatorcontrib><creatorcontrib>Schnur, Sebastian</creatorcontrib><creatorcontrib>Groß, Axel</creatorcontrib><creatorcontrib>Morgenstern, Karina</creatorcontrib><title>Molecular‐Scale Imaging of Water Near Charged Surfaces</title><title>ChemElectroChem</title><description>The orientation of water molecules on water bilayers is investigated on Cu(111) by a combination of scanning tunneling microscopy and density functional theory. Theory predicts that the application of a field reorients the adsorbed water molecules at a distance of close to a nanometer from the surface. Experimental evidence is presented for this prediction. Furthermore, the process differs strongly between adsorption on two and on three ordered layers. We propose that these results give insight into the behavior of the diffusive layer close to electrodes.
So simple? Since the basic idea of ultrahigh‐vacuum (UHV) electrochemical modeling emerged, it has been claimed that UHV model experiments are too simple because they do not include the electrode potential. This combined scanning tunneling microscopy and density functional theory study gives insight into the influence of the electric field on single molecules in the diffusive layer. A field reorients adsorbed water molecules on water bilayers on Cu(111) at a distance of about 1 nm from the surface.</description><subject>Adsorption</subject><subject>Charging</subject><subject>density functional calculations</subject><subject>Density functional theory</subject><subject>Diffusion</subject><subject>Diffusion layers</subject><subject>Electrodes</subject><subject>Mathematical models</subject><subject>scanning probe microscopy</subject><subject>Scanning tunneling microscopy</subject><subject>single‐molecule studies</subject><subject>Surface chemistry</subject><subject>water</subject><issn>2196-0216</issn><issn>2196-0216</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNqFkM9KAzEQh4MoWGqvnhe8eNk6-bPZ7FGWqoWqhyoewzSb1C3bbk26SG8-gs_ok5hSUfEiDMwcvt8w8xFySmFIAdiFsY0ZMqAcACQ_ID1GC5kCo_Lw13xMBiEsIkIpZFzJHlG3bWNN16D_eHufGmxsMl7ivF7Nk9YlT7ixPrmz6JPyGf3cVsm08w6NDSfkyGET7OCr98nj1eihvEkn99fj8nKSGq5yns5mRlhLBZi8qERVYJFTV4FzTEAmnZSmAg7IMC9mGc9NrEwIiRKcRGQF75Pz_d61b186GzZ6WYf4bYMr23ZB01yIHBTNVETP_qCLtvOreF2kQDKpMiUjNdxTxrcheOv02tdL9FtNQe9c6p1L_e0yBop94LVu7PYfWpejSfmT_QSkm3ZD</recordid><startdate>20140211</startdate><enddate>20140211</enddate><creator>Mehlhorn, Michael</creator><creator>Schnur, Sebastian</creator><creator>Groß, Axel</creator><creator>Morgenstern, Karina</creator><general>WILEY‐VCH Verlag</general><general>John Wiley & Sons, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>20140211</creationdate><title>Molecular‐Scale Imaging of Water Near Charged Surfaces</title><author>Mehlhorn, Michael ; Schnur, Sebastian ; Groß, Axel ; Morgenstern, Karina</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3873-bbc4ee140c79d4d9a971fd0ff24056f66cd030a2a79b537c37c5446a60f6aa293</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Adsorption</topic><topic>Charging</topic><topic>density functional calculations</topic><topic>Density functional theory</topic><topic>Diffusion</topic><topic>Diffusion layers</topic><topic>Electrodes</topic><topic>Mathematical models</topic><topic>scanning probe microscopy</topic><topic>Scanning tunneling microscopy</topic><topic>single‐molecule studies</topic><topic>Surface chemistry</topic><topic>water</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mehlhorn, Michael</creatorcontrib><creatorcontrib>Schnur, Sebastian</creatorcontrib><creatorcontrib>Groß, Axel</creatorcontrib><creatorcontrib>Morgenstern, Karina</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>ChemElectroChem</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mehlhorn, Michael</au><au>Schnur, Sebastian</au><au>Groß, Axel</au><au>Morgenstern, Karina</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Molecular‐Scale Imaging of Water Near Charged Surfaces</atitle><jtitle>ChemElectroChem</jtitle><date>2014-02-11</date><risdate>2014</risdate><volume>1</volume><issue>2</issue><spage>431</spage><epage>435</epage><pages>431-435</pages><issn>2196-0216</issn><eissn>2196-0216</eissn><abstract>The orientation of water molecules on water bilayers is investigated on Cu(111) by a combination of scanning tunneling microscopy and density functional theory. Theory predicts that the application of a field reorients the adsorbed water molecules at a distance of close to a nanometer from the surface. Experimental evidence is presented for this prediction. Furthermore, the process differs strongly between adsorption on two and on three ordered layers. We propose that these results give insight into the behavior of the diffusive layer close to electrodes.
So simple? Since the basic idea of ultrahigh‐vacuum (UHV) electrochemical modeling emerged, it has been claimed that UHV model experiments are too simple because they do not include the electrode potential. This combined scanning tunneling microscopy and density functional theory study gives insight into the influence of the electric field on single molecules in the diffusive layer. A field reorients adsorbed water molecules on water bilayers on Cu(111) at a distance of about 1 nm from the surface.</abstract><cop>Weinheim</cop><pub>WILEY‐VCH Verlag</pub><doi>10.1002/celc.201300063</doi><tpages>5</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2196-0216 |
ispartof | ChemElectroChem, 2014-02, Vol.1 (2), p.431-435 |
issn | 2196-0216 2196-0216 |
language | eng |
recordid | cdi_proquest_miscellaneous_1744708158 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | Adsorption Charging density functional calculations Density functional theory Diffusion Diffusion layers Electrodes Mathematical models scanning probe microscopy Scanning tunneling microscopy single‐molecule studies Surface chemistry water |
title | Molecular‐Scale Imaging of Water Near Charged Surfaces |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T14%3A35%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Molecular%E2%80%90Scale%20Imaging%20of%20Water%20Near%20Charged%20Surfaces&rft.jtitle=ChemElectroChem&rft.au=Mehlhorn,%20Michael&rft.date=2014-02-11&rft.volume=1&rft.issue=2&rft.spage=431&rft.epage=435&rft.pages=431-435&rft.issn=2196-0216&rft.eissn=2196-0216&rft_id=info:doi/10.1002/celc.201300063&rft_dat=%3Cproquest_cross%3E3786351071%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1706268586&rft_id=info:pmid/&rfr_iscdi=true |