Utilization of secondary-treated wastewater for the production of freshwater microalgae
In this work, we studied the potential use of secondary-treated wastewater as nutrient source in the production of freshwater microalgae strains. Experiments were performed indoors in a semicontinuous mode, at 0.3 day⁻¹, simulating outdoor conditions. We demonstrated that all the tested strains can...
Gespeichert in:
Veröffentlicht in: | Applied microbiology and biotechnology 2015-08, Vol.99 (16), p.6931-6944 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 6944 |
---|---|
container_issue | 16 |
container_start_page | 6931 |
container_title | Applied microbiology and biotechnology |
container_volume | 99 |
creator | Gómez-Serrano, C Morales-Amaral, M. M Acién, F. G Escudero, R Fernández-Sevilla, J. M Molina-Grima, E |
description | In this work, we studied the potential use of secondary-treated wastewater as nutrient source in the production of freshwater microalgae strains. Experiments were performed indoors in a semicontinuous mode, at 0.3 day⁻¹, simulating outdoor conditions. We demonstrated that all the tested strains can be produced by using only secondary-treated wastewater as the nutrient source. The utilization of secondary-treated wastewater imposes nutrient-limiting conditions, with maximal biomass productivity dropping to 0.5 g l⁻¹ day⁻¹ and modifies the biochemical composition of the biomass by increasing the amount of lipids and carbohydrates while reducing the biomass protein content. We measured fatty acid content and productivity of up to 25 %d.wt. and 110 mg l⁻¹ day⁻¹, respectively. We demonstrated that all the tested strains were capable of completely removing the nitrogen and phosphorus contained in the secondary-treated wastewater, and while the use of this effluent reduced the cells’ photosynthetic efficiency, the nitrogen and phosphorus coefficient yield increased. Muriellopsis sp. and S. subpicatus were selected as the most promising strains for outdoor production using secondary-treated wastewater as the culture medium; this was not only because of their high productivity but also their photosynthetic efficiency, of up to 2.5 %, along with nutrient coefficient yields of up to 96 gbᵢₒₘₐₛₛ gN ⁻¹ and 166 gbᵢₒₘₐₛₛ gP ⁻¹. Coupling microalgae production processes to tertiary treatment in wastewater treatment plants make it possible to recover nutrients contained in the water and to produce valuable biomass, especially where nutrient removal is required prior to wastewater discharge. |
doi_str_mv | 10.1007/s00253-015-6694-y |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_1744704255</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A423273551</galeid><sourcerecordid>A423273551</sourcerecordid><originalsourceid>FETCH-LOGICAL-c779t-b7f27fb174ac5930f20eed85dde60ce3adfa32777f4501568e120c09cac1a5383</originalsourceid><addsrcrecordid>eNqNkktv1DAUhSMEokPhB7CBSN3AIuX6nSyrikelSkiUEUvL41ynqTJxsR2V4dfjkBYYhABlkcj5zrHP9SmKpwSOCYB6FQGoYBUQUUnZ8Gp3r1gRzmgFkvD7xQqIEpUSTX1QPIrxCoDQWsqHxQGVwKQCuSo-rVM_9F9N6v1YeldGtH5sTdhVKaBJ2JY3Jia8yZ-hdD6U6RLL6-Dbyd5JXMB4uQDb3gZvhs7g4-KBM0PEJ7fvw2L95vXH03fV-fu3Z6cn55VVqknVRjmq3IYobqxoGDgKiG0t2hYlWGSmdYZRpZTjIseUNRIKFhprLDGC1eyweLH45jN9njAmve2jxWEwI_op6uzMFXAqxH-gJO9ECfB_o7KpG0k5mV2PfkOv_BTGnPk7xYgkhP-kOjOg7kfnUzB2NtUnnOaETAiSqeM_UPlpMU_Wj-j6vL4neLknyEzCL6kzU4z67OLDPksWNl9RjAGdvg79Nt-0JqDnOumlTjrPWc910ruseXYbbtpssf2huOtPBugCxPxr7DD8kv4vrs8XkTNemy70Ua8vKBAJc0NpLdg3UcTbxg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1698316114</pqid></control><display><type>article</type><title>Utilization of secondary-treated wastewater for the production of freshwater microalgae</title><source>MEDLINE</source><source>SpringerLink Journals</source><creator>Gómez-Serrano, C ; Morales-Amaral, M. M ; Acién, F. G ; Escudero, R ; Fernández-Sevilla, J. M ; Molina-Grima, E</creator><creatorcontrib>Gómez-Serrano, C ; Morales-Amaral, M. M ; Acién, F. G ; Escudero, R ; Fernández-Sevilla, J. M ; Molina-Grima, E</creatorcontrib><description>In this work, we studied the potential use of secondary-treated wastewater as nutrient source in the production of freshwater microalgae strains. Experiments were performed indoors in a semicontinuous mode, at 0.3 day⁻¹, simulating outdoor conditions. We demonstrated that all the tested strains can be produced by using only secondary-treated wastewater as the nutrient source. The utilization of secondary-treated wastewater imposes nutrient-limiting conditions, with maximal biomass productivity dropping to 0.5 g l⁻¹ day⁻¹ and modifies the biochemical composition of the biomass by increasing the amount of lipids and carbohydrates while reducing the biomass protein content. We measured fatty acid content and productivity of up to 25 %d.wt. and 110 mg l⁻¹ day⁻¹, respectively. We demonstrated that all the tested strains were capable of completely removing the nitrogen and phosphorus contained in the secondary-treated wastewater, and while the use of this effluent reduced the cells’ photosynthetic efficiency, the nitrogen and phosphorus coefficient yield increased. Muriellopsis sp. and S. subpicatus were selected as the most promising strains for outdoor production using secondary-treated wastewater as the culture medium; this was not only because of their high productivity but also their photosynthetic efficiency, of up to 2.5 %, along with nutrient coefficient yields of up to 96 gbᵢₒₘₐₛₛ gN ⁻¹ and 166 gbᵢₒₘₐₛₛ gP ⁻¹. Coupling microalgae production processes to tertiary treatment in wastewater treatment plants make it possible to recover nutrients contained in the water and to produce valuable biomass, especially where nutrient removal is required prior to wastewater discharge.</description><identifier>ISSN: 0175-7598</identifier><identifier>EISSN: 1432-0614</identifier><identifier>DOI: 10.1007/s00253-015-6694-y</identifier><identifier>PMID: 26036706</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Algae ; Alternative energy sources ; Biochemical composition ; Biodiesel fuels ; Bioenergy and Biofuels ; Biofuels ; Biomass ; biomass production ; Biomedical and Life Sciences ; Biotechnology ; Carbohydrates ; Carbohydrates - analysis ; Chlorophyta - chemistry ; Chlorophyta - growth & development ; Chlorophyta - metabolism ; Coefficients ; Consortia ; culture media ; Culture Media - chemistry ; Cytosol - chemistry ; Efficiency ; Experiments ; fatty acid composition ; Fatty Acids - analysis ; freshwater ; Freshwater ecology ; Life Sciences ; Lipids ; Microalgae ; Microbial Genetics and Genomics ; Microbiology ; Microorganisms ; Muriellopsis ; Nitrogen ; Nitrogen - analysis ; Nutrient removal ; Nutrient utilization ; Nutrients ; Phosphorus ; Phosphorus - analysis ; Photosynthesis ; Production processes ; Productivity ; protein content ; Proteins - analysis ; Purification ; Scenedesmus - chemistry ; Scenedesmus - growth & development ; Scenedesmus - metabolism ; Sewage ; Sludge ; Strain ; Studies ; Waste water ; Waste Water - chemistry ; Waste Water - microbiology ; wastewater ; Wastewater discharges ; Wastewater treatment ; Wastewater treatment plants ; Water treatment ; yields</subject><ispartof>Applied microbiology and biotechnology, 2015-08, Vol.99 (16), p.6931-6944</ispartof><rights>Springer-Verlag Berlin Heidelberg 2015</rights><rights>COPYRIGHT 2015 Springer</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c779t-b7f27fb174ac5930f20eed85dde60ce3adfa32777f4501568e120c09cac1a5383</citedby><cites>FETCH-LOGICAL-c779t-b7f27fb174ac5930f20eed85dde60ce3adfa32777f4501568e120c09cac1a5383</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00253-015-6694-y$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00253-015-6694-y$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26036706$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Gómez-Serrano, C</creatorcontrib><creatorcontrib>Morales-Amaral, M. M</creatorcontrib><creatorcontrib>Acién, F. G</creatorcontrib><creatorcontrib>Escudero, R</creatorcontrib><creatorcontrib>Fernández-Sevilla, J. M</creatorcontrib><creatorcontrib>Molina-Grima, E</creatorcontrib><title>Utilization of secondary-treated wastewater for the production of freshwater microalgae</title><title>Applied microbiology and biotechnology</title><addtitle>Appl Microbiol Biotechnol</addtitle><addtitle>Appl Microbiol Biotechnol</addtitle><description>In this work, we studied the potential use of secondary-treated wastewater as nutrient source in the production of freshwater microalgae strains. Experiments were performed indoors in a semicontinuous mode, at 0.3 day⁻¹, simulating outdoor conditions. We demonstrated that all the tested strains can be produced by using only secondary-treated wastewater as the nutrient source. The utilization of secondary-treated wastewater imposes nutrient-limiting conditions, with maximal biomass productivity dropping to 0.5 g l⁻¹ day⁻¹ and modifies the biochemical composition of the biomass by increasing the amount of lipids and carbohydrates while reducing the biomass protein content. We measured fatty acid content and productivity of up to 25 %d.wt. and 110 mg l⁻¹ day⁻¹, respectively. We demonstrated that all the tested strains were capable of completely removing the nitrogen and phosphorus contained in the secondary-treated wastewater, and while the use of this effluent reduced the cells’ photosynthetic efficiency, the nitrogen and phosphorus coefficient yield increased. Muriellopsis sp. and S. subpicatus were selected as the most promising strains for outdoor production using secondary-treated wastewater as the culture medium; this was not only because of their high productivity but also their photosynthetic efficiency, of up to 2.5 %, along with nutrient coefficient yields of up to 96 gbᵢₒₘₐₛₛ gN ⁻¹ and 166 gbᵢₒₘₐₛₛ gP ⁻¹. Coupling microalgae production processes to tertiary treatment in wastewater treatment plants make it possible to recover nutrients contained in the water and to produce valuable biomass, especially where nutrient removal is required prior to wastewater discharge.</description><subject>Algae</subject><subject>Alternative energy sources</subject><subject>Biochemical composition</subject><subject>Biodiesel fuels</subject><subject>Bioenergy and Biofuels</subject><subject>Biofuels</subject><subject>Biomass</subject><subject>biomass production</subject><subject>Biomedical and Life Sciences</subject><subject>Biotechnology</subject><subject>Carbohydrates</subject><subject>Carbohydrates - analysis</subject><subject>Chlorophyta - chemistry</subject><subject>Chlorophyta - growth & development</subject><subject>Chlorophyta - metabolism</subject><subject>Coefficients</subject><subject>Consortia</subject><subject>culture media</subject><subject>Culture Media - chemistry</subject><subject>Cytosol - chemistry</subject><subject>Efficiency</subject><subject>Experiments</subject><subject>fatty acid composition</subject><subject>Fatty Acids - analysis</subject><subject>freshwater</subject><subject>Freshwater ecology</subject><subject>Life Sciences</subject><subject>Lipids</subject><subject>Microalgae</subject><subject>Microbial Genetics and Genomics</subject><subject>Microbiology</subject><subject>Microorganisms</subject><subject>Muriellopsis</subject><subject>Nitrogen</subject><subject>Nitrogen - analysis</subject><subject>Nutrient removal</subject><subject>Nutrient utilization</subject><subject>Nutrients</subject><subject>Phosphorus</subject><subject>Phosphorus - analysis</subject><subject>Photosynthesis</subject><subject>Production processes</subject><subject>Productivity</subject><subject>protein content</subject><subject>Proteins - analysis</subject><subject>Purification</subject><subject>Scenedesmus - chemistry</subject><subject>Scenedesmus - growth & development</subject><subject>Scenedesmus - metabolism</subject><subject>Sewage</subject><subject>Sludge</subject><subject>Strain</subject><subject>Studies</subject><subject>Waste water</subject><subject>Waste Water - chemistry</subject><subject>Waste Water - microbiology</subject><subject>wastewater</subject><subject>Wastewater discharges</subject><subject>Wastewater treatment</subject><subject>Wastewater treatment plants</subject><subject>Water treatment</subject><subject>yields</subject><issn>0175-7598</issn><issn>1432-0614</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNqNkktv1DAUhSMEokPhB7CBSN3AIuX6nSyrikelSkiUEUvL41ynqTJxsR2V4dfjkBYYhABlkcj5zrHP9SmKpwSOCYB6FQGoYBUQUUnZ8Gp3r1gRzmgFkvD7xQqIEpUSTX1QPIrxCoDQWsqHxQGVwKQCuSo-rVM_9F9N6v1YeldGtH5sTdhVKaBJ2JY3Jia8yZ-hdD6U6RLL6-Dbyd5JXMB4uQDb3gZvhs7g4-KBM0PEJ7fvw2L95vXH03fV-fu3Z6cn55VVqknVRjmq3IYobqxoGDgKiG0t2hYlWGSmdYZRpZTjIseUNRIKFhprLDGC1eyweLH45jN9njAmve2jxWEwI_op6uzMFXAqxH-gJO9ECfB_o7KpG0k5mV2PfkOv_BTGnPk7xYgkhP-kOjOg7kfnUzB2NtUnnOaETAiSqeM_UPlpMU_Wj-j6vL4neLknyEzCL6kzU4z67OLDPksWNl9RjAGdvg79Nt-0JqDnOumlTjrPWc910ruseXYbbtpssf2huOtPBugCxPxr7DD8kv4vrs8XkTNemy70Ua8vKBAJc0NpLdg3UcTbxg</recordid><startdate>20150801</startdate><enddate>20150801</enddate><creator>Gómez-Serrano, C</creator><creator>Morales-Amaral, M. M</creator><creator>Acién, F. G</creator><creator>Escudero, R</creator><creator>Fernández-Sevilla, J. M</creator><creator>Molina-Grima, E</creator><general>Springer Berlin Heidelberg</general><general>Springer</general><general>Springer Nature B.V</general><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>3V.</scope><scope>7QL</scope><scope>7T7</scope><scope>7WY</scope><scope>7WZ</scope><scope>7X7</scope><scope>7XB</scope><scope>87Z</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8FL</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FRNLG</scope><scope>FYUFA</scope><scope>F~G</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K60</scope><scope>K6~</scope><scope>K9.</scope><scope>L.-</scope><scope>LK8</scope><scope>M0C</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7N</scope><scope>M7P</scope><scope>P64</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope><scope>7QH</scope><scope>7QO</scope><scope>7UA</scope><scope>F1W</scope><scope>H97</scope><scope>L.G</scope><scope>7SU</scope><scope>7U5</scope><scope>F28</scope><scope>KR7</scope><scope>L7M</scope></search><sort><creationdate>20150801</creationdate><title>Utilization of secondary-treated wastewater for the production of freshwater microalgae</title><author>Gómez-Serrano, C ; Morales-Amaral, M. M ; Acién, F. G ; Escudero, R ; Fernández-Sevilla, J. M ; Molina-Grima, E</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c779t-b7f27fb174ac5930f20eed85dde60ce3adfa32777f4501568e120c09cac1a5383</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Algae</topic><topic>Alternative energy sources</topic><topic>Biochemical composition</topic><topic>Biodiesel fuels</topic><topic>Bioenergy and Biofuels</topic><topic>Biofuels</topic><topic>Biomass</topic><topic>biomass production</topic><topic>Biomedical and Life Sciences</topic><topic>Biotechnology</topic><topic>Carbohydrates</topic><topic>Carbohydrates - analysis</topic><topic>Chlorophyta - chemistry</topic><topic>Chlorophyta - growth & development</topic><topic>Chlorophyta - metabolism</topic><topic>Coefficients</topic><topic>Consortia</topic><topic>culture media</topic><topic>Culture Media - chemistry</topic><topic>Cytosol - chemistry</topic><topic>Efficiency</topic><topic>Experiments</topic><topic>fatty acid composition</topic><topic>Fatty Acids - analysis</topic><topic>freshwater</topic><topic>Freshwater ecology</topic><topic>Life Sciences</topic><topic>Lipids</topic><topic>Microalgae</topic><topic>Microbial Genetics and Genomics</topic><topic>Microbiology</topic><topic>Microorganisms</topic><topic>Muriellopsis</topic><topic>Nitrogen</topic><topic>Nitrogen - analysis</topic><topic>Nutrient removal</topic><topic>Nutrient utilization</topic><topic>Nutrients</topic><topic>Phosphorus</topic><topic>Phosphorus - analysis</topic><topic>Photosynthesis</topic><topic>Production processes</topic><topic>Productivity</topic><topic>protein content</topic><topic>Proteins - analysis</topic><topic>Purification</topic><topic>Scenedesmus - chemistry</topic><topic>Scenedesmus - growth & development</topic><topic>Scenedesmus - metabolism</topic><topic>Sewage</topic><topic>Sludge</topic><topic>Strain</topic><topic>Studies</topic><topic>Waste water</topic><topic>Waste Water - chemistry</topic><topic>Waste Water - microbiology</topic><topic>wastewater</topic><topic>Wastewater discharges</topic><topic>Wastewater treatment</topic><topic>Wastewater treatment plants</topic><topic>Water treatment</topic><topic>yields</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gómez-Serrano, C</creatorcontrib><creatorcontrib>Morales-Amaral, M. M</creatorcontrib><creatorcontrib>Acién, F. G</creatorcontrib><creatorcontrib>Escudero, R</creatorcontrib><creatorcontrib>Fernández-Sevilla, J. M</creatorcontrib><creatorcontrib>Molina-Grima, E</creatorcontrib><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Business Premium Collection (Alumni)</collection><collection>Health Research Premium Collection</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Biological Science Collection</collection><collection>ABI/INFORM Global</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>Aqualine</collection><collection>Biotechnology Research Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Environmental Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Applied microbiology and biotechnology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gómez-Serrano, C</au><au>Morales-Amaral, M. M</au><au>Acién, F. G</au><au>Escudero, R</au><au>Fernández-Sevilla, J. M</au><au>Molina-Grima, E</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Utilization of secondary-treated wastewater for the production of freshwater microalgae</atitle><jtitle>Applied microbiology and biotechnology</jtitle><stitle>Appl Microbiol Biotechnol</stitle><addtitle>Appl Microbiol Biotechnol</addtitle><date>2015-08-01</date><risdate>2015</risdate><volume>99</volume><issue>16</issue><spage>6931</spage><epage>6944</epage><pages>6931-6944</pages><issn>0175-7598</issn><eissn>1432-0614</eissn><abstract>In this work, we studied the potential use of secondary-treated wastewater as nutrient source in the production of freshwater microalgae strains. Experiments were performed indoors in a semicontinuous mode, at 0.3 day⁻¹, simulating outdoor conditions. We demonstrated that all the tested strains can be produced by using only secondary-treated wastewater as the nutrient source. The utilization of secondary-treated wastewater imposes nutrient-limiting conditions, with maximal biomass productivity dropping to 0.5 g l⁻¹ day⁻¹ and modifies the biochemical composition of the biomass by increasing the amount of lipids and carbohydrates while reducing the biomass protein content. We measured fatty acid content and productivity of up to 25 %d.wt. and 110 mg l⁻¹ day⁻¹, respectively. We demonstrated that all the tested strains were capable of completely removing the nitrogen and phosphorus contained in the secondary-treated wastewater, and while the use of this effluent reduced the cells’ photosynthetic efficiency, the nitrogen and phosphorus coefficient yield increased. Muriellopsis sp. and S. subpicatus were selected as the most promising strains for outdoor production using secondary-treated wastewater as the culture medium; this was not only because of their high productivity but also their photosynthetic efficiency, of up to 2.5 %, along with nutrient coefficient yields of up to 96 gbᵢₒₘₐₛₛ gN ⁻¹ and 166 gbᵢₒₘₐₛₛ gP ⁻¹. Coupling microalgae production processes to tertiary treatment in wastewater treatment plants make it possible to recover nutrients contained in the water and to produce valuable biomass, especially where nutrient removal is required prior to wastewater discharge.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><pmid>26036706</pmid><doi>10.1007/s00253-015-6694-y</doi><tpages>14</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0175-7598 |
ispartof | Applied microbiology and biotechnology, 2015-08, Vol.99 (16), p.6931-6944 |
issn | 0175-7598 1432-0614 |
language | eng |
recordid | cdi_proquest_miscellaneous_1744704255 |
source | MEDLINE; SpringerLink Journals |
subjects | Algae Alternative energy sources Biochemical composition Biodiesel fuels Bioenergy and Biofuels Biofuels Biomass biomass production Biomedical and Life Sciences Biotechnology Carbohydrates Carbohydrates - analysis Chlorophyta - chemistry Chlorophyta - growth & development Chlorophyta - metabolism Coefficients Consortia culture media Culture Media - chemistry Cytosol - chemistry Efficiency Experiments fatty acid composition Fatty Acids - analysis freshwater Freshwater ecology Life Sciences Lipids Microalgae Microbial Genetics and Genomics Microbiology Microorganisms Muriellopsis Nitrogen Nitrogen - analysis Nutrient removal Nutrient utilization Nutrients Phosphorus Phosphorus - analysis Photosynthesis Production processes Productivity protein content Proteins - analysis Purification Scenedesmus - chemistry Scenedesmus - growth & development Scenedesmus - metabolism Sewage Sludge Strain Studies Waste water Waste Water - chemistry Waste Water - microbiology wastewater Wastewater discharges Wastewater treatment Wastewater treatment plants Water treatment yields |
title | Utilization of secondary-treated wastewater for the production of freshwater microalgae |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T06%3A29%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Utilization%20of%20secondary-treated%20wastewater%20for%20the%20production%20of%20freshwater%20microalgae&rft.jtitle=Applied%20microbiology%20and%20biotechnology&rft.au=G%C3%B3mez-Serrano,%20C&rft.date=2015-08-01&rft.volume=99&rft.issue=16&rft.spage=6931&rft.epage=6944&rft.pages=6931-6944&rft.issn=0175-7598&rft.eissn=1432-0614&rft_id=info:doi/10.1007/s00253-015-6694-y&rft_dat=%3Cgale_proqu%3EA423273551%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1698316114&rft_id=info:pmid/26036706&rft_galeid=A423273551&rfr_iscdi=true |