Effective object segmentation based on physical theory in an MR image

Object recognition is usually processed based on region segmentation algorithm. Region segmentation in the IT field is carried out by computerized processing of various input information such as brightness, shape, and pattern analysis. If the information mentioned does not make sense, however, many...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Multimedia tools and applications 2015-08, Vol.74 (16), p.6273-6286
Hauptverfasser: Eun, Sung-Jong, Kim, Hyeonjin, Park, Jung-Wook, Whangbo, Taeg-Keun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 6286
container_issue 16
container_start_page 6273
container_title Multimedia tools and applications
container_volume 74
creator Eun, Sung-Jong
Kim, Hyeonjin
Park, Jung-Wook
Whangbo, Taeg-Keun
description Object recognition is usually processed based on region segmentation algorithm. Region segmentation in the IT field is carried out by computerized processing of various input information such as brightness, shape, and pattern analysis. If the information mentioned does not make sense, however, many limitations could occur with region segmentation during computer processing. Therefore, this paper suggests effective object segmentation method based on R2 information within the magnetic resonance (MR) theory. In this study, the experiment had been conducted using images including the liver region and by setting up feature points of R2 map as seed points for region growing to enable region segmentation even when the border line was not clear. As a result, an average area difference of 7.5 %, which was higher than the accuracy of conventional region segmentation algorithm, was obtained.
doi_str_mv 10.1007/s11042-014-2089-9
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1744704193</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1744704193</sourcerecordid><originalsourceid>FETCH-LOGICAL-c419t-3be834caf22f00e4caa69a075509302ff2d1ea417f333c379993ac85477d189e3</originalsourceid><addsrcrecordid>eNp1kE1LAzEQhoMoWKs_wFvAi5foTJJtNkcp9QMUQfQc0u2k3bLdrclW6L83ZT2I4Cnv4XlnMg9jlwg3CGBuEyJoKQC1kFBaYY_YCAujhDESj3NWJQhTAJ6ys5TWADgppB6x2SwEqvr6i3g3X-fEEy031Pa-r7uWz32iBc9hu9qnuvIN71fUxT2vW-5b_vLG641f0jk7Cb5JdPHzjtnH_ex9-iieXx-epnfPotJoe6HmVCpd-SBlAKCc_MR6MEUBVoEMQS6QvEYTlFKVMtZa5auy0MYssLSkxux6mLuN3eeOUu82daqoaXxL3S45NFobyLtURq_-oOtuF9v8u0xlVQgTLDKFA1XFLqVIwW1jvijuHYI7iHWDWJfFuoNYZ3NHDp2U2XZJ8dfkf0vfOXV4_w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1704210615</pqid></control><display><type>article</type><title>Effective object segmentation based on physical theory in an MR image</title><source>SpringerLink Journals - AutoHoldings</source><creator>Eun, Sung-Jong ; Kim, Hyeonjin ; Park, Jung-Wook ; Whangbo, Taeg-Keun</creator><creatorcontrib>Eun, Sung-Jong ; Kim, Hyeonjin ; Park, Jung-Wook ; Whangbo, Taeg-Keun</creatorcontrib><description>Object recognition is usually processed based on region segmentation algorithm. Region segmentation in the IT field is carried out by computerized processing of various input information such as brightness, shape, and pattern analysis. If the information mentioned does not make sense, however, many limitations could occur with region segmentation during computer processing. Therefore, this paper suggests effective object segmentation method based on R2 information within the magnetic resonance (MR) theory. In this study, the experiment had been conducted using images including the liver region and by setting up feature points of R2 map as seed points for region growing to enable region segmentation even when the border line was not clear. As a result, an average area difference of 7.5 %, which was higher than the accuracy of conventional region segmentation algorithm, was obtained.</description><identifier>ISSN: 1380-7501</identifier><identifier>EISSN: 1573-7721</identifier><identifier>DOI: 10.1007/s11042-014-2089-9</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Accuracy ; Algorithms ; Analysis ; Borders ; Computer Communication Networks ; Computer Science ; Data Structures and Information Theory ; Image processing systems ; Information technology ; Liver ; Magnetic resonance imaging ; Methods ; Multimedia ; Multimedia Information Systems ; NMR ; Nuclear magnetic resonance ; Object recognition ; Pattern analysis ; Pattern recognition ; Segmentation ; Special Purpose and Application-Based Systems ; Statistical analysis ; Studies</subject><ispartof>Multimedia tools and applications, 2015-08, Vol.74 (16), p.6273-6286</ispartof><rights>Springer Science+Business Media New York 2014</rights><rights>Springer Science+Business Media New York 2015</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c419t-3be834caf22f00e4caa69a075509302ff2d1ea417f333c379993ac85477d189e3</citedby><cites>FETCH-LOGICAL-c419t-3be834caf22f00e4caa69a075509302ff2d1ea417f333c379993ac85477d189e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11042-014-2089-9$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11042-014-2089-9$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Eun, Sung-Jong</creatorcontrib><creatorcontrib>Kim, Hyeonjin</creatorcontrib><creatorcontrib>Park, Jung-Wook</creatorcontrib><creatorcontrib>Whangbo, Taeg-Keun</creatorcontrib><title>Effective object segmentation based on physical theory in an MR image</title><title>Multimedia tools and applications</title><addtitle>Multimed Tools Appl</addtitle><description>Object recognition is usually processed based on region segmentation algorithm. Region segmentation in the IT field is carried out by computerized processing of various input information such as brightness, shape, and pattern analysis. If the information mentioned does not make sense, however, many limitations could occur with region segmentation during computer processing. Therefore, this paper suggests effective object segmentation method based on R2 information within the magnetic resonance (MR) theory. In this study, the experiment had been conducted using images including the liver region and by setting up feature points of R2 map as seed points for region growing to enable region segmentation even when the border line was not clear. As a result, an average area difference of 7.5 %, which was higher than the accuracy of conventional region segmentation algorithm, was obtained.</description><subject>Accuracy</subject><subject>Algorithms</subject><subject>Analysis</subject><subject>Borders</subject><subject>Computer Communication Networks</subject><subject>Computer Science</subject><subject>Data Structures and Information Theory</subject><subject>Image processing systems</subject><subject>Information technology</subject><subject>Liver</subject><subject>Magnetic resonance imaging</subject><subject>Methods</subject><subject>Multimedia</subject><subject>Multimedia Information Systems</subject><subject>NMR</subject><subject>Nuclear magnetic resonance</subject><subject>Object recognition</subject><subject>Pattern analysis</subject><subject>Pattern recognition</subject><subject>Segmentation</subject><subject>Special Purpose and Application-Based Systems</subject><subject>Statistical analysis</subject><subject>Studies</subject><issn>1380-7501</issn><issn>1573-7721</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp1kE1LAzEQhoMoWKs_wFvAi5foTJJtNkcp9QMUQfQc0u2k3bLdrclW6L83ZT2I4Cnv4XlnMg9jlwg3CGBuEyJoKQC1kFBaYY_YCAujhDESj3NWJQhTAJ6ys5TWADgppB6x2SwEqvr6i3g3X-fEEy031Pa-r7uWz32iBc9hu9qnuvIN71fUxT2vW-5b_vLG641f0jk7Cb5JdPHzjtnH_ex9-iieXx-epnfPotJoe6HmVCpd-SBlAKCc_MR6MEUBVoEMQS6QvEYTlFKVMtZa5auy0MYssLSkxux6mLuN3eeOUu82daqoaXxL3S45NFobyLtURq_-oOtuF9v8u0xlVQgTLDKFA1XFLqVIwW1jvijuHYI7iHWDWJfFuoNYZ3NHDp2U2XZJ8dfkf0vfOXV4_w</recordid><startdate>20150801</startdate><enddate>20150801</enddate><creator>Eun, Sung-Jong</creator><creator>Kim, Hyeonjin</creator><creator>Park, Jung-Wook</creator><creator>Whangbo, Taeg-Keun</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>8AL</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>L.-</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M0N</scope><scope>M2O</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope></search><sort><creationdate>20150801</creationdate><title>Effective object segmentation based on physical theory in an MR image</title><author>Eun, Sung-Jong ; Kim, Hyeonjin ; Park, Jung-Wook ; Whangbo, Taeg-Keun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c419t-3be834caf22f00e4caa69a075509302ff2d1ea417f333c379993ac85477d189e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Accuracy</topic><topic>Algorithms</topic><topic>Analysis</topic><topic>Borders</topic><topic>Computer Communication Networks</topic><topic>Computer Science</topic><topic>Data Structures and Information Theory</topic><topic>Image processing systems</topic><topic>Information technology</topic><topic>Liver</topic><topic>Magnetic resonance imaging</topic><topic>Methods</topic><topic>Multimedia</topic><topic>Multimedia Information Systems</topic><topic>NMR</topic><topic>Nuclear magnetic resonance</topic><topic>Object recognition</topic><topic>Pattern analysis</topic><topic>Pattern recognition</topic><topic>Segmentation</topic><topic>Special Purpose and Application-Based Systems</topic><topic>Statistical analysis</topic><topic>Studies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Eun, Sung-Jong</creatorcontrib><creatorcontrib>Kim, Hyeonjin</creatorcontrib><creatorcontrib>Park, Jung-Wook</creatorcontrib><creatorcontrib>Whangbo, Taeg-Keun</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM Global</collection><collection>Computing Database</collection><collection>Research Library</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><jtitle>Multimedia tools and applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Eun, Sung-Jong</au><au>Kim, Hyeonjin</au><au>Park, Jung-Wook</au><au>Whangbo, Taeg-Keun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Effective object segmentation based on physical theory in an MR image</atitle><jtitle>Multimedia tools and applications</jtitle><stitle>Multimed Tools Appl</stitle><date>2015-08-01</date><risdate>2015</risdate><volume>74</volume><issue>16</issue><spage>6273</spage><epage>6286</epage><pages>6273-6286</pages><issn>1380-7501</issn><eissn>1573-7721</eissn><abstract>Object recognition is usually processed based on region segmentation algorithm. Region segmentation in the IT field is carried out by computerized processing of various input information such as brightness, shape, and pattern analysis. If the information mentioned does not make sense, however, many limitations could occur with region segmentation during computer processing. Therefore, this paper suggests effective object segmentation method based on R2 information within the magnetic resonance (MR) theory. In this study, the experiment had been conducted using images including the liver region and by setting up feature points of R2 map as seed points for region growing to enable region segmentation even when the border line was not clear. As a result, an average area difference of 7.5 %, which was higher than the accuracy of conventional region segmentation algorithm, was obtained.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11042-014-2089-9</doi><tpages>14</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1380-7501
ispartof Multimedia tools and applications, 2015-08, Vol.74 (16), p.6273-6286
issn 1380-7501
1573-7721
language eng
recordid cdi_proquest_miscellaneous_1744704193
source SpringerLink Journals - AutoHoldings
subjects Accuracy
Algorithms
Analysis
Borders
Computer Communication Networks
Computer Science
Data Structures and Information Theory
Image processing systems
Information technology
Liver
Magnetic resonance imaging
Methods
Multimedia
Multimedia Information Systems
NMR
Nuclear magnetic resonance
Object recognition
Pattern analysis
Pattern recognition
Segmentation
Special Purpose and Application-Based Systems
Statistical analysis
Studies
title Effective object segmentation based on physical theory in an MR image
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T23%3A13%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Effective%20object%20segmentation%20based%20on%20physical%20theory%20in%20an%20MR%20image&rft.jtitle=Multimedia%20tools%20and%20applications&rft.au=Eun,%20Sung-Jong&rft.date=2015-08-01&rft.volume=74&rft.issue=16&rft.spage=6273&rft.epage=6286&rft.pages=6273-6286&rft.issn=1380-7501&rft.eissn=1573-7721&rft_id=info:doi/10.1007/s11042-014-2089-9&rft_dat=%3Cproquest_cross%3E1744704193%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1704210615&rft_id=info:pmid/&rfr_iscdi=true