Identification of Plasticity Model Parameters of the Heat-Affected Zone in Resistance Spot Welded Martensitic Boron Steel

A material model is developed that predicts the plastic behaviour of fully hardened 22MnB5 base material and the heat-affected zone (HAZ) material found around its corresponding resistance spot welds (RSWs). Main focus will be on an accurate representation of strain fields up to high strains, which...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Key engineering materials 2015-03, Vol.639, p.369-376
Hauptverfasser: Greve, Lars, Eller, Tom, van den Boogaard, Ton, Andres, Michael, Meinders, Timo, Medricky, Miloslav
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 376
container_issue
container_start_page 369
container_title Key engineering materials
container_volume 639
creator Greve, Lars
Eller, Tom
van den Boogaard, Ton
Andres, Michael
Meinders, Timo
Medricky, Miloslav
description A material model is developed that predicts the plastic behaviour of fully hardened 22MnB5 base material and the heat-affected zone (HAZ) material found around its corresponding resistance spot welds (RSWs). Main focus will be on an accurate representation of strain fields up to high strains, which is required for subsequent calibration of the fracture behaviour of both base material and HAZ. The plastic behaviour of the base material is calibrated using standard tensile tests and notched tensile tests and an inverse FEM optimization algorithm. The plastic behaviour of the HAZ material is characterized using a specially designed tensile specimen with a HAZ in the gage section. The exact location of the HAZ relative to the centre of the RSW is determined using microhardness measurements, which are also used for mapping of the material properties into an FE-model of the specimen. With the parameters of the base material known, and by assuming a linear relation between the hardness and the plasticity model parameters of base material and HAZ, the unknown HAZ parameters are determined using inverse FEM optimization. A coupon specimen with HAZ is used to validate the model at hand.
doi_str_mv 10.4028/www.scientific.net/KEM.639.369
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1744703811</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>4068679601</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4269-35e4968cdab224462927d0ed5306304209e2a894498ec2b8e7365cbe2b3a7f123</originalsourceid><addsrcrecordid>eNqNkclKBDEQQBtRcP2HgCBeus3W6c5FXHBDB8UFwUvIpKsx0pOMSYZh_t4MIyiePKWgHq8CrygOCK44pu3RfD6vorHgku2tqRyko9uLUSWYrJiQa8UWEYKWspH1ep4xYaVsqdgstmP8wJiRltRbxeKm-xboZL1DvkcPg47JGpsWaOQ7GNCDDnoCCUJcrtM7oGvQqTztezAJOvTmHSDr0CNEG5N2BtDT1Cf0CkOX1yMdErhosxOd-ZCPPCWAYbfY6PUQYe_73SleLi-ez6_Lu_urm_PTu9JwKmTJauBStKbTY0o5F1TSpsPQ1QwLhjnFEqhuJeeyBUPHLTRM1GYMdMx00xPKdorDlXca_OcMYlITGw0Mg3bgZ1GRhvMGs5aQjO7_QT_8LLj8u0xJwmvG-ZI6XlEm-BgD9Goa7ESHhSJYLcuoXEb9lFG5jMplVC6jcpksOFkJUtAuJjDvv-78T_EF8wKfuw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1791453441</pqid></control><display><type>article</type><title>Identification of Plasticity Model Parameters of the Heat-Affected Zone in Resistance Spot Welded Martensitic Boron Steel</title><source>Scientific.net Journals</source><creator>Greve, Lars ; Eller, Tom ; van den Boogaard, Ton ; Andres, Michael ; Meinders, Timo ; Medricky, Miloslav</creator><creatorcontrib>Greve, Lars ; Eller, Tom ; van den Boogaard, Ton ; Andres, Michael ; Meinders, Timo ; Medricky, Miloslav</creatorcontrib><description>A material model is developed that predicts the plastic behaviour of fully hardened 22MnB5 base material and the heat-affected zone (HAZ) material found around its corresponding resistance spot welds (RSWs). Main focus will be on an accurate representation of strain fields up to high strains, which is required for subsequent calibration of the fracture behaviour of both base material and HAZ. The plastic behaviour of the base material is calibrated using standard tensile tests and notched tensile tests and an inverse FEM optimization algorithm. The plastic behaviour of the HAZ material is characterized using a specially designed tensile specimen with a HAZ in the gage section. The exact location of the HAZ relative to the centre of the RSW is determined using microhardness measurements, which are also used for mapping of the material properties into an FE-model of the specimen. With the parameters of the base material known, and by assuming a linear relation between the hardness and the plasticity model parameters of base material and HAZ, the unknown HAZ parameters are determined using inverse FEM optimization. A coupon specimen with HAZ is used to validate the model at hand.</description><identifier>ISSN: 1013-9826</identifier><identifier>ISSN: 1662-9795</identifier><identifier>EISSN: 1662-9795</identifier><identifier>DOI: 10.4028/www.scientific.net/KEM.639.369</identifier><language>eng</language><publisher>Zurich: Trans Tech Publications Ltd</publisher><subject>Calibration ; Finite element method ; Heat affected zone ; High strength steels ; Inverse ; Mathematical models ; Optimization ; Strain ; Tensile tests</subject><ispartof>Key engineering materials, 2015-03, Vol.639, p.369-376</ispartof><rights>2015 Trans Tech Publications Ltd</rights><rights>Copyright Trans Tech Publications Ltd. Mar 2015</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4269-35e4968cdab224462927d0ed5306304209e2a894498ec2b8e7365cbe2b3a7f123</citedby><cites>FETCH-LOGICAL-c4269-35e4968cdab224462927d0ed5306304209e2a894498ec2b8e7365cbe2b3a7f123</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttps://www.scientific.net/Image/TitleCover/3910?width=600</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Greve, Lars</creatorcontrib><creatorcontrib>Eller, Tom</creatorcontrib><creatorcontrib>van den Boogaard, Ton</creatorcontrib><creatorcontrib>Andres, Michael</creatorcontrib><creatorcontrib>Meinders, Timo</creatorcontrib><creatorcontrib>Medricky, Miloslav</creatorcontrib><title>Identification of Plasticity Model Parameters of the Heat-Affected Zone in Resistance Spot Welded Martensitic Boron Steel</title><title>Key engineering materials</title><description>A material model is developed that predicts the plastic behaviour of fully hardened 22MnB5 base material and the heat-affected zone (HAZ) material found around its corresponding resistance spot welds (RSWs). Main focus will be on an accurate representation of strain fields up to high strains, which is required for subsequent calibration of the fracture behaviour of both base material and HAZ. The plastic behaviour of the base material is calibrated using standard tensile tests and notched tensile tests and an inverse FEM optimization algorithm. The plastic behaviour of the HAZ material is characterized using a specially designed tensile specimen with a HAZ in the gage section. The exact location of the HAZ relative to the centre of the RSW is determined using microhardness measurements, which are also used for mapping of the material properties into an FE-model of the specimen. With the parameters of the base material known, and by assuming a linear relation between the hardness and the plasticity model parameters of base material and HAZ, the unknown HAZ parameters are determined using inverse FEM optimization. A coupon specimen with HAZ is used to validate the model at hand.</description><subject>Calibration</subject><subject>Finite element method</subject><subject>Heat affected zone</subject><subject>High strength steels</subject><subject>Inverse</subject><subject>Mathematical models</subject><subject>Optimization</subject><subject>Strain</subject><subject>Tensile tests</subject><issn>1013-9826</issn><issn>1662-9795</issn><issn>1662-9795</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNkclKBDEQQBtRcP2HgCBeus3W6c5FXHBDB8UFwUvIpKsx0pOMSYZh_t4MIyiePKWgHq8CrygOCK44pu3RfD6vorHgku2tqRyko9uLUSWYrJiQa8UWEYKWspH1ep4xYaVsqdgstmP8wJiRltRbxeKm-xboZL1DvkcPg47JGpsWaOQ7GNCDDnoCCUJcrtM7oGvQqTztezAJOvTmHSDr0CNEG5N2BtDT1Cf0CkOX1yMdErhosxOd-ZCPPCWAYbfY6PUQYe_73SleLi-ez6_Lu_urm_PTu9JwKmTJauBStKbTY0o5F1TSpsPQ1QwLhjnFEqhuJeeyBUPHLTRM1GYMdMx00xPKdorDlXca_OcMYlITGw0Mg3bgZ1GRhvMGs5aQjO7_QT_8LLj8u0xJwmvG-ZI6XlEm-BgD9Goa7ESHhSJYLcuoXEb9lFG5jMplVC6jcpksOFkJUtAuJjDvv-78T_EF8wKfuw</recordid><startdate>20150301</startdate><enddate>20150301</enddate><creator>Greve, Lars</creator><creator>Eller, Tom</creator><creator>van den Boogaard, Ton</creator><creator>Andres, Michael</creator><creator>Meinders, Timo</creator><creator>Medricky, Miloslav</creator><general>Trans Tech Publications Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>F28</scope><scope>FR3</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>L6V</scope><scope>M7S</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20150301</creationdate><title>Identification of Plasticity Model Parameters of the Heat-Affected Zone in Resistance Spot Welded Martensitic Boron Steel</title><author>Greve, Lars ; Eller, Tom ; van den Boogaard, Ton ; Andres, Michael ; Meinders, Timo ; Medricky, Miloslav</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4269-35e4968cdab224462927d0ed5306304209e2a894498ec2b8e7365cbe2b3a7f123</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Calibration</topic><topic>Finite element method</topic><topic>Heat affected zone</topic><topic>High strength steels</topic><topic>Inverse</topic><topic>Mathematical models</topic><topic>Optimization</topic><topic>Strain</topic><topic>Tensile tests</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Greve, Lars</creatorcontrib><creatorcontrib>Eller, Tom</creatorcontrib><creatorcontrib>van den Boogaard, Ton</creatorcontrib><creatorcontrib>Andres, Michael</creatorcontrib><creatorcontrib>Meinders, Timo</creatorcontrib><creatorcontrib>Medricky, Miloslav</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>Key engineering materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Greve, Lars</au><au>Eller, Tom</au><au>van den Boogaard, Ton</au><au>Andres, Michael</au><au>Meinders, Timo</au><au>Medricky, Miloslav</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Identification of Plasticity Model Parameters of the Heat-Affected Zone in Resistance Spot Welded Martensitic Boron Steel</atitle><jtitle>Key engineering materials</jtitle><date>2015-03-01</date><risdate>2015</risdate><volume>639</volume><spage>369</spage><epage>376</epage><pages>369-376</pages><issn>1013-9826</issn><issn>1662-9795</issn><eissn>1662-9795</eissn><abstract>A material model is developed that predicts the plastic behaviour of fully hardened 22MnB5 base material and the heat-affected zone (HAZ) material found around its corresponding resistance spot welds (RSWs). Main focus will be on an accurate representation of strain fields up to high strains, which is required for subsequent calibration of the fracture behaviour of both base material and HAZ. The plastic behaviour of the base material is calibrated using standard tensile tests and notched tensile tests and an inverse FEM optimization algorithm. The plastic behaviour of the HAZ material is characterized using a specially designed tensile specimen with a HAZ in the gage section. The exact location of the HAZ relative to the centre of the RSW is determined using microhardness measurements, which are also used for mapping of the material properties into an FE-model of the specimen. With the parameters of the base material known, and by assuming a linear relation between the hardness and the plasticity model parameters of base material and HAZ, the unknown HAZ parameters are determined using inverse FEM optimization. A coupon specimen with HAZ is used to validate the model at hand.</abstract><cop>Zurich</cop><pub>Trans Tech Publications Ltd</pub><doi>10.4028/www.scientific.net/KEM.639.369</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1013-9826
ispartof Key engineering materials, 2015-03, Vol.639, p.369-376
issn 1013-9826
1662-9795
1662-9795
language eng
recordid cdi_proquest_miscellaneous_1744703811
source Scientific.net Journals
subjects Calibration
Finite element method
Heat affected zone
High strength steels
Inverse
Mathematical models
Optimization
Strain
Tensile tests
title Identification of Plasticity Model Parameters of the Heat-Affected Zone in Resistance Spot Welded Martensitic Boron Steel
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T17%3A56%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Identification%20of%20Plasticity%20Model%20Parameters%20of%20the%20Heat-Affected%20Zone%20in%20Resistance%20Spot%20Welded%20Martensitic%20Boron%20Steel&rft.jtitle=Key%20engineering%20materials&rft.au=Greve,%20Lars&rft.date=2015-03-01&rft.volume=639&rft.spage=369&rft.epage=376&rft.pages=369-376&rft.issn=1013-9826&rft.eissn=1662-9795&rft_id=info:doi/10.4028/www.scientific.net/KEM.639.369&rft_dat=%3Cproquest_cross%3E4068679601%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1791453441&rft_id=info:pmid/&rfr_iscdi=true