Goal Driven Optimization of Process Parameters for Maximum Efficiency in Laser Bending of Advanced High Strength Steels

Laser forming or bending is fast becoming an attractive option for the forming of advanced high strength steels (AHSS), due primarily to the reduced formability of AHSS when compared with conventional steels in traditional contact-based forming processes. An inherently iterative process, laser formi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Key engineering materials 2015-03, Vol.639, p.115-122
Hauptverfasser: Edwardson, Stuart P., Dearden, Geoff, Riley, Mike J.W., Griffiths, Jonathan, Sheikholeslami, Ghazal
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Laser forming or bending is fast becoming an attractive option for the forming of advanced high strength steels (AHSS), due primarily to the reduced formability of AHSS when compared with conventional steels in traditional contact-based forming processes. An inherently iterative process, laser forming must be optimized for efficiency in order to compete with contact based forming processes; as such, a robust and accurate method of optimal process parameter prediction is required. In this paper, goal driven optimization is conducted, utilizing numerical simulations as the basis for the prediction of optimal process parameters for the laser bending of DP 1000 steel. A key consideration of the optimization process is the requirement for minimal micro-structural transformation in automotive grade high strength steels such as DP 1000.
ISSN:1013-9826
1662-9795
1662-9795
DOI:10.4028/www.scientific.net/KEM.639.115