The Lyapunov–Movchan method in problems of the stability of flows and deformation processes

The extension of Lyapunov's method to continuous mechanical systems are discussed. An annotated bibliography of papers is given in which, based on the Lyapunov–Movchan method, with the construction of corresponding functionals, a direct analysis is carried out of the stability of motion (deform...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of applied mathematics and mechanics 2014-01, Vol.78 (6), p.621-633
Hauptverfasser: Georgievskii, D.V., Kvachev, K.V.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 633
container_issue 6
container_start_page 621
container_title Journal of applied mathematics and mechanics
container_volume 78
creator Georgievskii, D.V.
Kvachev, K.V.
description The extension of Lyapunov's method to continuous mechanical systems are discussed. An annotated bibliography of papers is given in which, based on the Lyapunov–Movchan method, with the construction of corresponding functionals, a direct analysis is carried out of the stability of motion (deformation) of continuous mechanical systems. The material is divided into sections, devoted to the following: (a) the extension of the mathematical apparatus as a whole to continuous and dynamic systems, (b) the stability of elastic, elastoplastic and viscoelastic deformable solids, (c) stability in aeroelasticity and hydroelasticity theory, (d) the linearized theory of hydrodynamic stability, and (e) the stability with reference to perturbations of material functions in the theory of constitutive relations.
doi_str_mv 10.1016/j.jappmathmech.2015.04.010
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1744702237</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0021892815000350</els_id><sourcerecordid>1744702237</sourcerecordid><originalsourceid>FETCH-LOGICAL-c427t-c355b8e037539e45ab3febea9092e569c9c565a050b42a940262ccd53d17cc243</originalsourceid><addsrcrecordid>eNqNkE1OwzAQhS0EEqVwB4sVm4SxY-eHHeJfKmJTlshynIniKIlDnBZ1xx24ISchpSy6ZDWj0XtvZj5CzhmEDFh8WYe17vtWj1WLpgo5MBmCCIHBAZkBcBakGU8P9_pjcuJ9DcASiNMZeVtWSBcb3a86t_7-_Hp2a1PpjrY4Vq6gtqP94PIGW09dScdJ7Eed28aOm-2gbNyHp7oraIGlG6ZDrPu1GPQe_Sk5KnXj8eyvzsnr_d3y5jFYvDw83VwvAiN4MgYmkjJPEaJERhkKqfOoxBx1BhlHGWcmMzKWGiTkgutMAI-5MYWMCpYYw0U0Jxe73Gnz-wr9qFrrDTaN7tCtvGKJEAlwHiWT9GonNYPzfsBS9YNt9bBRDNSWqarVPlO1ZapAqInpZL7dmXF6Zm1xUN5Y7AwWdkAzqsLZ_8T8ADsHiOU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1744702237</pqid></control><display><type>article</type><title>The Lyapunov–Movchan method in problems of the stability of flows and deformation processes</title><source>Access via ScienceDirect (Elsevier)</source><creator>Georgievskii, D.V. ; Kvachev, K.V.</creator><creatorcontrib>Georgievskii, D.V. ; Kvachev, K.V.</creatorcontrib><description>The extension of Lyapunov's method to continuous mechanical systems are discussed. An annotated bibliography of papers is given in which, based on the Lyapunov–Movchan method, with the construction of corresponding functionals, a direct analysis is carried out of the stability of motion (deformation) of continuous mechanical systems. The material is divided into sections, devoted to the following: (a) the extension of the mathematical apparatus as a whole to continuous and dynamic systems, (b) the stability of elastic, elastoplastic and viscoelastic deformable solids, (c) stability in aeroelasticity and hydroelasticity theory, (d) the linearized theory of hydrodynamic stability, and (e) the stability with reference to perturbations of material functions in the theory of constitutive relations.</description><identifier>ISSN: 0021-8928</identifier><identifier>EISSN: 0021-8928</identifier><identifier>DOI: 10.1016/j.jappmathmech.2015.04.010</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Constitutive relationships ; Deformation ; Dynamical systems ; Dynamics ; Elastoplasticity ; Mathematical analysis ; Mechanical systems ; Stability</subject><ispartof>Journal of applied mathematics and mechanics, 2014-01, Vol.78 (6), p.621-633</ispartof><rights>2015 Elsevier Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c427t-c355b8e037539e45ab3febea9092e569c9c565a050b42a940262ccd53d17cc243</citedby><cites>FETCH-LOGICAL-c427t-c355b8e037539e45ab3febea9092e569c9c565a050b42a940262ccd53d17cc243</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.jappmathmech.2015.04.010$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>315,782,786,3552,27931,27932,46002</link.rule.ids></links><search><creatorcontrib>Georgievskii, D.V.</creatorcontrib><creatorcontrib>Kvachev, K.V.</creatorcontrib><title>The Lyapunov–Movchan method in problems of the stability of flows and deformation processes</title><title>Journal of applied mathematics and mechanics</title><description>The extension of Lyapunov's method to continuous mechanical systems are discussed. An annotated bibliography of papers is given in which, based on the Lyapunov–Movchan method, with the construction of corresponding functionals, a direct analysis is carried out of the stability of motion (deformation) of continuous mechanical systems. The material is divided into sections, devoted to the following: (a) the extension of the mathematical apparatus as a whole to continuous and dynamic systems, (b) the stability of elastic, elastoplastic and viscoelastic deformable solids, (c) stability in aeroelasticity and hydroelasticity theory, (d) the linearized theory of hydrodynamic stability, and (e) the stability with reference to perturbations of material functions in the theory of constitutive relations.</description><subject>Constitutive relationships</subject><subject>Deformation</subject><subject>Dynamical systems</subject><subject>Dynamics</subject><subject>Elastoplasticity</subject><subject>Mathematical analysis</subject><subject>Mechanical systems</subject><subject>Stability</subject><issn>0021-8928</issn><issn>0021-8928</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNqNkE1OwzAQhS0EEqVwB4sVm4SxY-eHHeJfKmJTlshynIniKIlDnBZ1xx24ISchpSy6ZDWj0XtvZj5CzhmEDFh8WYe17vtWj1WLpgo5MBmCCIHBAZkBcBakGU8P9_pjcuJ9DcASiNMZeVtWSBcb3a86t_7-_Hp2a1PpjrY4Vq6gtqP94PIGW09dScdJ7Eed28aOm-2gbNyHp7oraIGlG6ZDrPu1GPQe_Sk5KnXj8eyvzsnr_d3y5jFYvDw83VwvAiN4MgYmkjJPEaJERhkKqfOoxBx1BhlHGWcmMzKWGiTkgutMAI-5MYWMCpYYw0U0Jxe73Gnz-wr9qFrrDTaN7tCtvGKJEAlwHiWT9GonNYPzfsBS9YNt9bBRDNSWqarVPlO1ZapAqInpZL7dmXF6Zm1xUN5Y7AwWdkAzqsLZ_8T8ADsHiOU</recordid><startdate>20140101</startdate><enddate>20140101</enddate><creator>Georgievskii, D.V.</creator><creator>Kvachev, K.V.</creator><general>Elsevier Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope></search><sort><creationdate>20140101</creationdate><title>The Lyapunov–Movchan method in problems of the stability of flows and deformation processes</title><author>Georgievskii, D.V. ; Kvachev, K.V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c427t-c355b8e037539e45ab3febea9092e569c9c565a050b42a940262ccd53d17cc243</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Constitutive relationships</topic><topic>Deformation</topic><topic>Dynamical systems</topic><topic>Dynamics</topic><topic>Elastoplasticity</topic><topic>Mathematical analysis</topic><topic>Mechanical systems</topic><topic>Stability</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Georgievskii, D.V.</creatorcontrib><creatorcontrib>Kvachev, K.V.</creatorcontrib><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><jtitle>Journal of applied mathematics and mechanics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Georgievskii, D.V.</au><au>Kvachev, K.V.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Lyapunov–Movchan method in problems of the stability of flows and deformation processes</atitle><jtitle>Journal of applied mathematics and mechanics</jtitle><date>2014-01-01</date><risdate>2014</risdate><volume>78</volume><issue>6</issue><spage>621</spage><epage>633</epage><pages>621-633</pages><issn>0021-8928</issn><eissn>0021-8928</eissn><abstract>The extension of Lyapunov's method to continuous mechanical systems are discussed. An annotated bibliography of papers is given in which, based on the Lyapunov–Movchan method, with the construction of corresponding functionals, a direct analysis is carried out of the stability of motion (deformation) of continuous mechanical systems. The material is divided into sections, devoted to the following: (a) the extension of the mathematical apparatus as a whole to continuous and dynamic systems, (b) the stability of elastic, elastoplastic and viscoelastic deformable solids, (c) stability in aeroelasticity and hydroelasticity theory, (d) the linearized theory of hydrodynamic stability, and (e) the stability with reference to perturbations of material functions in the theory of constitutive relations.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.jappmathmech.2015.04.010</doi><tpages>13</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0021-8928
ispartof Journal of applied mathematics and mechanics, 2014-01, Vol.78 (6), p.621-633
issn 0021-8928
0021-8928
language eng
recordid cdi_proquest_miscellaneous_1744702237
source Access via ScienceDirect (Elsevier)
subjects Constitutive relationships
Deformation
Dynamical systems
Dynamics
Elastoplasticity
Mathematical analysis
Mechanical systems
Stability
title The Lyapunov–Movchan method in problems of the stability of flows and deformation processes
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-04T17%3A49%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Lyapunov%E2%80%93Movchan%20method%20in%20problems%20of%20the%20stability%20of%20flows%20and%20deformation%20processes&rft.jtitle=Journal%20of%20applied%20mathematics%20and%20mechanics&rft.au=Georgievskii,%20D.V.&rft.date=2014-01-01&rft.volume=78&rft.issue=6&rft.spage=621&rft.epage=633&rft.pages=621-633&rft.issn=0021-8928&rft.eissn=0021-8928&rft_id=info:doi/10.1016/j.jappmathmech.2015.04.010&rft_dat=%3Cproquest_cross%3E1744702237%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1744702237&rft_id=info:pmid/&rft_els_id=S0021892815000350&rfr_iscdi=true