The Lyapunov–Movchan method in problems of the stability of flows and deformation processes
The extension of Lyapunov's method to continuous mechanical systems are discussed. An annotated bibliography of papers is given in which, based on the Lyapunov–Movchan method, with the construction of corresponding functionals, a direct analysis is carried out of the stability of motion (deform...
Gespeichert in:
Veröffentlicht in: | Journal of applied mathematics and mechanics 2014-01, Vol.78 (6), p.621-633 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 633 |
---|---|
container_issue | 6 |
container_start_page | 621 |
container_title | Journal of applied mathematics and mechanics |
container_volume | 78 |
creator | Georgievskii, D.V. Kvachev, K.V. |
description | The extension of Lyapunov's method to continuous mechanical systems are discussed. An annotated bibliography of papers is given in which, based on the Lyapunov–Movchan method, with the construction of corresponding functionals, a direct analysis is carried out of the stability of motion (deformation) of continuous mechanical systems. The material is divided into sections, devoted to the following: (a) the extension of the mathematical apparatus as a whole to continuous and dynamic systems, (b) the stability of elastic, elastoplastic and viscoelastic deformable solids, (c) stability in aeroelasticity and hydroelasticity theory, (d) the linearized theory of hydrodynamic stability, and (e) the stability with reference to perturbations of material functions in the theory of constitutive relations. |
doi_str_mv | 10.1016/j.jappmathmech.2015.04.010 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1744702237</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0021892815000350</els_id><sourcerecordid>1744702237</sourcerecordid><originalsourceid>FETCH-LOGICAL-c427t-c355b8e037539e45ab3febea9092e569c9c565a050b42a940262ccd53d17cc243</originalsourceid><addsrcrecordid>eNqNkE1OwzAQhS0EEqVwB4sVm4SxY-eHHeJfKmJTlshynIniKIlDnBZ1xx24ISchpSy6ZDWj0XtvZj5CzhmEDFh8WYe17vtWj1WLpgo5MBmCCIHBAZkBcBakGU8P9_pjcuJ9DcASiNMZeVtWSBcb3a86t_7-_Hp2a1PpjrY4Vq6gtqP94PIGW09dScdJ7Eed28aOm-2gbNyHp7oraIGlG6ZDrPu1GPQe_Sk5KnXj8eyvzsnr_d3y5jFYvDw83VwvAiN4MgYmkjJPEaJERhkKqfOoxBx1BhlHGWcmMzKWGiTkgutMAI-5MYWMCpYYw0U0Jxe73Gnz-wr9qFrrDTaN7tCtvGKJEAlwHiWT9GonNYPzfsBS9YNt9bBRDNSWqarVPlO1ZapAqInpZL7dmXF6Zm1xUN5Y7AwWdkAzqsLZ_8T8ADsHiOU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1744702237</pqid></control><display><type>article</type><title>The Lyapunov–Movchan method in problems of the stability of flows and deformation processes</title><source>Access via ScienceDirect (Elsevier)</source><creator>Georgievskii, D.V. ; Kvachev, K.V.</creator><creatorcontrib>Georgievskii, D.V. ; Kvachev, K.V.</creatorcontrib><description>The extension of Lyapunov's method to continuous mechanical systems are discussed. An annotated bibliography of papers is given in which, based on the Lyapunov–Movchan method, with the construction of corresponding functionals, a direct analysis is carried out of the stability of motion (deformation) of continuous mechanical systems. The material is divided into sections, devoted to the following: (a) the extension of the mathematical apparatus as a whole to continuous and dynamic systems, (b) the stability of elastic, elastoplastic and viscoelastic deformable solids, (c) stability in aeroelasticity and hydroelasticity theory, (d) the linearized theory of hydrodynamic stability, and (e) the stability with reference to perturbations of material functions in the theory of constitutive relations.</description><identifier>ISSN: 0021-8928</identifier><identifier>EISSN: 0021-8928</identifier><identifier>DOI: 10.1016/j.jappmathmech.2015.04.010</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Constitutive relationships ; Deformation ; Dynamical systems ; Dynamics ; Elastoplasticity ; Mathematical analysis ; Mechanical systems ; Stability</subject><ispartof>Journal of applied mathematics and mechanics, 2014-01, Vol.78 (6), p.621-633</ispartof><rights>2015 Elsevier Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c427t-c355b8e037539e45ab3febea9092e569c9c565a050b42a940262ccd53d17cc243</citedby><cites>FETCH-LOGICAL-c427t-c355b8e037539e45ab3febea9092e569c9c565a050b42a940262ccd53d17cc243</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.jappmathmech.2015.04.010$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>315,782,786,3552,27931,27932,46002</link.rule.ids></links><search><creatorcontrib>Georgievskii, D.V.</creatorcontrib><creatorcontrib>Kvachev, K.V.</creatorcontrib><title>The Lyapunov–Movchan method in problems of the stability of flows and deformation processes</title><title>Journal of applied mathematics and mechanics</title><description>The extension of Lyapunov's method to continuous mechanical systems are discussed. An annotated bibliography of papers is given in which, based on the Lyapunov–Movchan method, with the construction of corresponding functionals, a direct analysis is carried out of the stability of motion (deformation) of continuous mechanical systems. The material is divided into sections, devoted to the following: (a) the extension of the mathematical apparatus as a whole to continuous and dynamic systems, (b) the stability of elastic, elastoplastic and viscoelastic deformable solids, (c) stability in aeroelasticity and hydroelasticity theory, (d) the linearized theory of hydrodynamic stability, and (e) the stability with reference to perturbations of material functions in the theory of constitutive relations.</description><subject>Constitutive relationships</subject><subject>Deformation</subject><subject>Dynamical systems</subject><subject>Dynamics</subject><subject>Elastoplasticity</subject><subject>Mathematical analysis</subject><subject>Mechanical systems</subject><subject>Stability</subject><issn>0021-8928</issn><issn>0021-8928</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNqNkE1OwzAQhS0EEqVwB4sVm4SxY-eHHeJfKmJTlshynIniKIlDnBZ1xx24ISchpSy6ZDWj0XtvZj5CzhmEDFh8WYe17vtWj1WLpgo5MBmCCIHBAZkBcBakGU8P9_pjcuJ9DcASiNMZeVtWSBcb3a86t_7-_Hp2a1PpjrY4Vq6gtqP94PIGW09dScdJ7Eed28aOm-2gbNyHp7oraIGlG6ZDrPu1GPQe_Sk5KnXj8eyvzsnr_d3y5jFYvDw83VwvAiN4MgYmkjJPEaJERhkKqfOoxBx1BhlHGWcmMzKWGiTkgutMAI-5MYWMCpYYw0U0Jxe73Gnz-wr9qFrrDTaN7tCtvGKJEAlwHiWT9GonNYPzfsBS9YNt9bBRDNSWqarVPlO1ZapAqInpZL7dmXF6Zm1xUN5Y7AwWdkAzqsLZ_8T8ADsHiOU</recordid><startdate>20140101</startdate><enddate>20140101</enddate><creator>Georgievskii, D.V.</creator><creator>Kvachev, K.V.</creator><general>Elsevier Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope></search><sort><creationdate>20140101</creationdate><title>The Lyapunov–Movchan method in problems of the stability of flows and deformation processes</title><author>Georgievskii, D.V. ; Kvachev, K.V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c427t-c355b8e037539e45ab3febea9092e569c9c565a050b42a940262ccd53d17cc243</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Constitutive relationships</topic><topic>Deformation</topic><topic>Dynamical systems</topic><topic>Dynamics</topic><topic>Elastoplasticity</topic><topic>Mathematical analysis</topic><topic>Mechanical systems</topic><topic>Stability</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Georgievskii, D.V.</creatorcontrib><creatorcontrib>Kvachev, K.V.</creatorcontrib><collection>CrossRef</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><jtitle>Journal of applied mathematics and mechanics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Georgievskii, D.V.</au><au>Kvachev, K.V.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Lyapunov–Movchan method in problems of the stability of flows and deformation processes</atitle><jtitle>Journal of applied mathematics and mechanics</jtitle><date>2014-01-01</date><risdate>2014</risdate><volume>78</volume><issue>6</issue><spage>621</spage><epage>633</epage><pages>621-633</pages><issn>0021-8928</issn><eissn>0021-8928</eissn><abstract>The extension of Lyapunov's method to continuous mechanical systems are discussed. An annotated bibliography of papers is given in which, based on the Lyapunov–Movchan method, with the construction of corresponding functionals, a direct analysis is carried out of the stability of motion (deformation) of continuous mechanical systems. The material is divided into sections, devoted to the following: (a) the extension of the mathematical apparatus as a whole to continuous and dynamic systems, (b) the stability of elastic, elastoplastic and viscoelastic deformable solids, (c) stability in aeroelasticity and hydroelasticity theory, (d) the linearized theory of hydrodynamic stability, and (e) the stability with reference to perturbations of material functions in the theory of constitutive relations.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.jappmathmech.2015.04.010</doi><tpages>13</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-8928 |
ispartof | Journal of applied mathematics and mechanics, 2014-01, Vol.78 (6), p.621-633 |
issn | 0021-8928 0021-8928 |
language | eng |
recordid | cdi_proquest_miscellaneous_1744702237 |
source | Access via ScienceDirect (Elsevier) |
subjects | Constitutive relationships Deformation Dynamical systems Dynamics Elastoplasticity Mathematical analysis Mechanical systems Stability |
title | The Lyapunov–Movchan method in problems of the stability of flows and deformation processes |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-04T17%3A49%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Lyapunov%E2%80%93Movchan%20method%20in%20problems%20of%20the%20stability%20of%20flows%20and%20deformation%20processes&rft.jtitle=Journal%20of%20applied%20mathematics%20and%20mechanics&rft.au=Georgievskii,%20D.V.&rft.date=2014-01-01&rft.volume=78&rft.issue=6&rft.spage=621&rft.epage=633&rft.pages=621-633&rft.issn=0021-8928&rft.eissn=0021-8928&rft_id=info:doi/10.1016/j.jappmathmech.2015.04.010&rft_dat=%3Cproquest_cross%3E1744702237%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1744702237&rft_id=info:pmid/&rft_els_id=S0021892815000350&rfr_iscdi=true |