Identification of Human Emotions via Univariate and Multivarite Multiscale Entropy

This work analyzes the emotions of human in terms of complexity. This analysis is achieved by applying both univariate and multivariate multiscale entropy methods on a multimodal dataset. Most of the contemporary human-computer interaction systems are unable to identify human affective states. So, t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:American journal of engineering and applied sciences 2015-07, Vol.8 (3), p.410-416
1. Verfasser: Ahammed, Kawser
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 416
container_issue 3
container_start_page 410
container_title American journal of engineering and applied sciences
container_volume 8
creator Ahammed, Kawser
description This work analyzes the emotions of human in terms of complexity. This analysis is achieved by applying both univariate and multivariate multiscale entropy methods on a multimodal dataset. Most of the contemporary human-computer interaction systems are unable to identify human affective states. So, the benefit of analyzing human emotions is to fill this gap by detecting human affective states. The univariate and multivariate multiscale entropy analysis curves obtained using multimodal dataset show differences in terms of complexity among different affective states, which can be used for emotion detection and classification for machine vision applications.
doi_str_mv 10.3844/ajeassp.2015.410.416
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1744701921</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1744701921</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2456-915957e0ee28e4c962f325b9bc20e7ab65cc052409db7d517176560d4147b38c3</originalsourceid><addsrcrecordid>eNo9kE9LAzEQxYMoWKvfwEOOXrYm2fxpjlKqLVQEseeQzWYhZTdZk91Cv73ZtngY5s3jMcz8AHjGaFEuKX3VB6tT6hcEYbag2aWY34AZlhQXApXy9l8TdA8eUjogxIkkeAa-t7X1g2uc0YMLHoYGbsZOe7juwmQkeHQa7r076uj0YKH2Nfwc2-Fs5Pmsk9GthWs_xNCfHsFdo9tkn659Dvbv65_Vpth9fWxXb7vCEMp4ITGTTFhkLVlaaiQnTUlYJStDkBW64swYxAhFsq5EzbDAgjOOaoqpqMqlKefg5bK3j-F3tGlQXT7Etq32NoxJYUGpQDi_maP0EjUxpBRto_roOh1PCiM1IVRXhGpCqDLCXLz8A6iNZnw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1744701921</pqid></control><display><type>article</type><title>Identification of Human Emotions via Univariate and Multivarite Multiscale Entropy</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Ahammed, Kawser</creator><creatorcontrib>Ahammed, Kawser</creatorcontrib><description>This work analyzes the emotions of human in terms of complexity. This analysis is achieved by applying both univariate and multivariate multiscale entropy methods on a multimodal dataset. Most of the contemporary human-computer interaction systems are unable to identify human affective states. So, the benefit of analyzing human emotions is to fill this gap by detecting human affective states. The univariate and multivariate multiscale entropy analysis curves obtained using multimodal dataset show differences in terms of complexity among different affective states, which can be used for emotion detection and classification for machine vision applications.</description><identifier>ISSN: 1941-7020</identifier><identifier>EISSN: 1941-7039</identifier><identifier>DOI: 10.3844/ajeassp.2015.410.416</identifier><language>eng</language><subject>Classification ; Complexity ; Emotions ; Entropy ; Human ; Machine vision</subject><ispartof>American journal of engineering and applied sciences, 2015-07, Vol.8 (3), p.410-416</ispartof><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2456-915957e0ee28e4c962f325b9bc20e7ab65cc052409db7d517176560d4147b38c3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Ahammed, Kawser</creatorcontrib><title>Identification of Human Emotions via Univariate and Multivarite Multiscale Entropy</title><title>American journal of engineering and applied sciences</title><description>This work analyzes the emotions of human in terms of complexity. This analysis is achieved by applying both univariate and multivariate multiscale entropy methods on a multimodal dataset. Most of the contemporary human-computer interaction systems are unable to identify human affective states. So, the benefit of analyzing human emotions is to fill this gap by detecting human affective states. The univariate and multivariate multiscale entropy analysis curves obtained using multimodal dataset show differences in terms of complexity among different affective states, which can be used for emotion detection and classification for machine vision applications.</description><subject>Classification</subject><subject>Complexity</subject><subject>Emotions</subject><subject>Entropy</subject><subject>Human</subject><subject>Machine vision</subject><issn>1941-7020</issn><issn>1941-7039</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNo9kE9LAzEQxYMoWKvfwEOOXrYm2fxpjlKqLVQEseeQzWYhZTdZk91Cv73ZtngY5s3jMcz8AHjGaFEuKX3VB6tT6hcEYbag2aWY34AZlhQXApXy9l8TdA8eUjogxIkkeAa-t7X1g2uc0YMLHoYGbsZOe7juwmQkeHQa7r076uj0YKH2Nfwc2-Fs5Pmsk9GthWs_xNCfHsFdo9tkn659Dvbv65_Vpth9fWxXb7vCEMp4ITGTTFhkLVlaaiQnTUlYJStDkBW64swYxAhFsq5EzbDAgjOOaoqpqMqlKefg5bK3j-F3tGlQXT7Etq32NoxJYUGpQDi_maP0EjUxpBRto_roOh1PCiM1IVRXhGpCqDLCXLz8A6iNZnw</recordid><startdate>20150723</startdate><enddate>20150723</enddate><creator>Ahammed, Kawser</creator><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>FR3</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20150723</creationdate><title>Identification of Human Emotions via Univariate and Multivarite Multiscale Entropy</title><author>Ahammed, Kawser</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2456-915957e0ee28e4c962f325b9bc20e7ab65cc052409db7d517176560d4147b38c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Classification</topic><topic>Complexity</topic><topic>Emotions</topic><topic>Entropy</topic><topic>Human</topic><topic>Machine vision</topic><toplevel>online_resources</toplevel><creatorcontrib>Ahammed, Kawser</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>American journal of engineering and applied sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ahammed, Kawser</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Identification of Human Emotions via Univariate and Multivarite Multiscale Entropy</atitle><jtitle>American journal of engineering and applied sciences</jtitle><date>2015-07-23</date><risdate>2015</risdate><volume>8</volume><issue>3</issue><spage>410</spage><epage>416</epage><pages>410-416</pages><issn>1941-7020</issn><eissn>1941-7039</eissn><abstract>This work analyzes the emotions of human in terms of complexity. This analysis is achieved by applying both univariate and multivariate multiscale entropy methods on a multimodal dataset. Most of the contemporary human-computer interaction systems are unable to identify human affective states. So, the benefit of analyzing human emotions is to fill this gap by detecting human affective states. The univariate and multivariate multiscale entropy analysis curves obtained using multimodal dataset show differences in terms of complexity among different affective states, which can be used for emotion detection and classification for machine vision applications.</abstract><doi>10.3844/ajeassp.2015.410.416</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1941-7020
ispartof American journal of engineering and applied sciences, 2015-07, Vol.8 (3), p.410-416
issn 1941-7020
1941-7039
language eng
recordid cdi_proquest_miscellaneous_1744701921
source Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects Classification
Complexity
Emotions
Entropy
Human
Machine vision
title Identification of Human Emotions via Univariate and Multivarite Multiscale Entropy
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T17%3A30%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Identification%20of%20Human%20Emotions%20via%20Univariate%20and%20Multivarite%20Multiscale%20Entropy&rft.jtitle=American%20journal%20of%20engineering%20and%20applied%20sciences&rft.au=Ahammed,%20Kawser&rft.date=2015-07-23&rft.volume=8&rft.issue=3&rft.spage=410&rft.epage=416&rft.pages=410-416&rft.issn=1941-7020&rft.eissn=1941-7039&rft_id=info:doi/10.3844/ajeassp.2015.410.416&rft_dat=%3Cproquest_cross%3E1744701921%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1744701921&rft_id=info:pmid/&rfr_iscdi=true