Identification of Human Emotions via Univariate and Multivarite Multiscale Entropy
This work analyzes the emotions of human in terms of complexity. This analysis is achieved by applying both univariate and multivariate multiscale entropy methods on a multimodal dataset. Most of the contemporary human-computer interaction systems are unable to identify human affective states. So, t...
Gespeichert in:
Veröffentlicht in: | American journal of engineering and applied sciences 2015-07, Vol.8 (3), p.410-416 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 416 |
---|---|
container_issue | 3 |
container_start_page | 410 |
container_title | American journal of engineering and applied sciences |
container_volume | 8 |
creator | Ahammed, Kawser |
description | This work analyzes the emotions of human in terms of complexity. This analysis is achieved by applying both univariate and multivariate multiscale entropy methods on a multimodal dataset. Most of the contemporary human-computer interaction systems are unable to identify human affective states. So, the benefit of analyzing human emotions is to fill this gap by detecting human affective states. The univariate and multivariate multiscale entropy analysis curves obtained using multimodal dataset show differences in terms of complexity among different affective states, which can be used for emotion detection and classification for machine vision applications. |
doi_str_mv | 10.3844/ajeassp.2015.410.416 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1744701921</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1744701921</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2456-915957e0ee28e4c962f325b9bc20e7ab65cc052409db7d517176560d4147b38c3</originalsourceid><addsrcrecordid>eNo9kE9LAzEQxYMoWKvfwEOOXrYm2fxpjlKqLVQEseeQzWYhZTdZk91Cv73ZtngY5s3jMcz8AHjGaFEuKX3VB6tT6hcEYbag2aWY34AZlhQXApXy9l8TdA8eUjogxIkkeAa-t7X1g2uc0YMLHoYGbsZOe7juwmQkeHQa7r076uj0YKH2Nfwc2-Fs5Pmsk9GthWs_xNCfHsFdo9tkn659Dvbv65_Vpth9fWxXb7vCEMp4ITGTTFhkLVlaaiQnTUlYJStDkBW64swYxAhFsq5EzbDAgjOOaoqpqMqlKefg5bK3j-F3tGlQXT7Etq32NoxJYUGpQDi_maP0EjUxpBRto_roOh1PCiM1IVRXhGpCqDLCXLz8A6iNZnw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1744701921</pqid></control><display><type>article</type><title>Identification of Human Emotions via Univariate and Multivarite Multiscale Entropy</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Ahammed, Kawser</creator><creatorcontrib>Ahammed, Kawser</creatorcontrib><description>This work analyzes the emotions of human in terms of complexity. This analysis is achieved by applying both univariate and multivariate multiscale entropy methods on a multimodal dataset. Most of the contemporary human-computer interaction systems are unable to identify human affective states. So, the benefit of analyzing human emotions is to fill this gap by detecting human affective states. The univariate and multivariate multiscale entropy analysis curves obtained using multimodal dataset show differences in terms of complexity among different affective states, which can be used for emotion detection and classification for machine vision applications.</description><identifier>ISSN: 1941-7020</identifier><identifier>EISSN: 1941-7039</identifier><identifier>DOI: 10.3844/ajeassp.2015.410.416</identifier><language>eng</language><subject>Classification ; Complexity ; Emotions ; Entropy ; Human ; Machine vision</subject><ispartof>American journal of engineering and applied sciences, 2015-07, Vol.8 (3), p.410-416</ispartof><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2456-915957e0ee28e4c962f325b9bc20e7ab65cc052409db7d517176560d4147b38c3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Ahammed, Kawser</creatorcontrib><title>Identification of Human Emotions via Univariate and Multivarite Multiscale Entropy</title><title>American journal of engineering and applied sciences</title><description>This work analyzes the emotions of human in terms of complexity. This analysis is achieved by applying both univariate and multivariate multiscale entropy methods on a multimodal dataset. Most of the contemporary human-computer interaction systems are unable to identify human affective states. So, the benefit of analyzing human emotions is to fill this gap by detecting human affective states. The univariate and multivariate multiscale entropy analysis curves obtained using multimodal dataset show differences in terms of complexity among different affective states, which can be used for emotion detection and classification for machine vision applications.</description><subject>Classification</subject><subject>Complexity</subject><subject>Emotions</subject><subject>Entropy</subject><subject>Human</subject><subject>Machine vision</subject><issn>1941-7020</issn><issn>1941-7039</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNo9kE9LAzEQxYMoWKvfwEOOXrYm2fxpjlKqLVQEseeQzWYhZTdZk91Cv73ZtngY5s3jMcz8AHjGaFEuKX3VB6tT6hcEYbag2aWY34AZlhQXApXy9l8TdA8eUjogxIkkeAa-t7X1g2uc0YMLHoYGbsZOe7juwmQkeHQa7r076uj0YKH2Nfwc2-Fs5Pmsk9GthWs_xNCfHsFdo9tkn659Dvbv65_Vpth9fWxXb7vCEMp4ITGTTFhkLVlaaiQnTUlYJStDkBW64swYxAhFsq5EzbDAgjOOaoqpqMqlKefg5bK3j-F3tGlQXT7Etq32NoxJYUGpQDi_maP0EjUxpBRto_roOh1PCiM1IVRXhGpCqDLCXLz8A6iNZnw</recordid><startdate>20150723</startdate><enddate>20150723</enddate><creator>Ahammed, Kawser</creator><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>FR3</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20150723</creationdate><title>Identification of Human Emotions via Univariate and Multivarite Multiscale Entropy</title><author>Ahammed, Kawser</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2456-915957e0ee28e4c962f325b9bc20e7ab65cc052409db7d517176560d4147b38c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Classification</topic><topic>Complexity</topic><topic>Emotions</topic><topic>Entropy</topic><topic>Human</topic><topic>Machine vision</topic><toplevel>online_resources</toplevel><creatorcontrib>Ahammed, Kawser</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>American journal of engineering and applied sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ahammed, Kawser</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Identification of Human Emotions via Univariate and Multivarite Multiscale Entropy</atitle><jtitle>American journal of engineering and applied sciences</jtitle><date>2015-07-23</date><risdate>2015</risdate><volume>8</volume><issue>3</issue><spage>410</spage><epage>416</epage><pages>410-416</pages><issn>1941-7020</issn><eissn>1941-7039</eissn><abstract>This work analyzes the emotions of human in terms of complexity. This analysis is achieved by applying both univariate and multivariate multiscale entropy methods on a multimodal dataset. Most of the contemporary human-computer interaction systems are unable to identify human affective states. So, the benefit of analyzing human emotions is to fill this gap by detecting human affective states. The univariate and multivariate multiscale entropy analysis curves obtained using multimodal dataset show differences in terms of complexity among different affective states, which can be used for emotion detection and classification for machine vision applications.</abstract><doi>10.3844/ajeassp.2015.410.416</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1941-7020 |
ispartof | American journal of engineering and applied sciences, 2015-07, Vol.8 (3), p.410-416 |
issn | 1941-7020 1941-7039 |
language | eng |
recordid | cdi_proquest_miscellaneous_1744701921 |
source | Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
subjects | Classification Complexity Emotions Entropy Human Machine vision |
title | Identification of Human Emotions via Univariate and Multivarite Multiscale Entropy |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T17%3A30%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Identification%20of%20Human%20Emotions%20via%20Univariate%20and%20Multivarite%20Multiscale%20Entropy&rft.jtitle=American%20journal%20of%20engineering%20and%20applied%20sciences&rft.au=Ahammed,%20Kawser&rft.date=2015-07-23&rft.volume=8&rft.issue=3&rft.spage=410&rft.epage=416&rft.pages=410-416&rft.issn=1941-7020&rft.eissn=1941-7039&rft_id=info:doi/10.3844/ajeassp.2015.410.416&rft_dat=%3Cproquest_cross%3E1744701921%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1744701921&rft_id=info:pmid/&rfr_iscdi=true |