Process optimization in high-average-power ultrashort pulse laser microfabrication: how laser process parameters influence efficiency, throughput and quality

In this paper, laser processing of technical grade stainless steel and copper using high-average-power ultrashort pulse lasers is studied in order to gain deeper insight into material removal for microfabrication. A high-pulse repetition frequency picosecond and femtosecond laser is used in conjunct...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied physics. A, Materials science & processing Materials science & processing, 2015-09, Vol.120 (3), p.847-855
Hauptverfasser: Schille, Joerg, Schneider, Lutz, Loeschner, Udo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 855
container_issue 3
container_start_page 847
container_title Applied physics. A, Materials science & processing
container_volume 120
creator Schille, Joerg
Schneider, Lutz
Loeschner, Udo
description In this paper, laser processing of technical grade stainless steel and copper using high-average-power ultrashort pulse lasers is studied in order to gain deeper insight into material removal for microfabrication. A high-pulse repetition frequency picosecond and femtosecond laser is used in conjunction with high-performance galvanometer scanners and an in-house developed two-axis polygon scanner system. By varying the processing parameters such as wavelength, pulse length, fluence and repetition rate, cavities of standardized geometry are fabricated and analyzed. From the depths of the cavities produced, the ablation rate and removal efficiency are estimated. In addition, the quality of the cavities is evaluated by means of scanning electron microscope micrographs or rather surface roughness measurements. From the results obtained, the influence of the machining parameters on material removal and machining quality is discussed. In addition, it is shown that both material removal rate and quality increase by using femtosecond compared to picosecond laser pulses. On stainless steel, a maximum throughput of 6.81 mm 3 /min is achieved with 32 W femtosecond laser powers; if using 187 W picosecond laser powers, the maximum is 15.04 mm 3 /min, respectively. On copper, the maximum throughputs are 6.1 mm 3 /min and 21.4 mm 3 /min, obtained with 32 W femtosecond and 187 W picosecond laser powers. The findings indicate that ultrashort pulses in the mid-fluence regime yield most efficient material removal. In conclusion, from the results of this analysis, a range of optimum processing parameters are derived feasible to enhance machining efficiency, throughput and quality in high-rate micromachining. The work carried out here clearly opens the way to significant industrial applications.
doi_str_mv 10.1007/s00339-015-9352-4
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1744695496</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1744695496</sourcerecordid><originalsourceid>FETCH-LOGICAL-c321t-6917dc226271111e96d9e66e65ca09abab2940944cd26c1508621dcb46d7814d3</originalsourceid><addsrcrecordid>eNp9UctO5DAQtBArMbD7AXvzkQMG23GcMTeEeEkjwYE9Wx6nMzFK4uAHo9l_2X9dw8yZvrhlV1W7uhD6zeglo7S5ipRWlSKU1URVNSfiCC2YqDihsqLHaEGVaMiyUvIEncb4RksJzhfo30vwFmLEfk5udH9Ncn7CbsK92_TEfEAwGyCz30LAeUjBxN6HhOc8RMCDieV6dDb4zqyDs1_sa9z77eFtPqjPJpgREoRYtLshw2QBQ9c560q7u8CpDz5v-jknbKYWv2czuLT7iX50pkz6dTjP0J_7u9fbR7J6fni6vVkRW3GWiFSsaS3nkjesFCjZKpASZG0NVWZt1lyJsgFhWy4tq-lSctbatZBts2Sirc7Q-V63_Pc9Q0x6dNHCMJgJfI6aNUJIVQslC5TtocV0jAE6PQc3mrDTjOrPKPQ-Cl2i0J9RaFE4fM-JBTttIOg3n8NUHH1D-g_LbpBg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1744695496</pqid></control><display><type>article</type><title>Process optimization in high-average-power ultrashort pulse laser microfabrication: how laser process parameters influence efficiency, throughput and quality</title><source>Springer Nature - Complete Springer Journals</source><creator>Schille, Joerg ; Schneider, Lutz ; Loeschner, Udo</creator><creatorcontrib>Schille, Joerg ; Schneider, Lutz ; Loeschner, Udo</creatorcontrib><description>In this paper, laser processing of technical grade stainless steel and copper using high-average-power ultrashort pulse lasers is studied in order to gain deeper insight into material removal for microfabrication. A high-pulse repetition frequency picosecond and femtosecond laser is used in conjunction with high-performance galvanometer scanners and an in-house developed two-axis polygon scanner system. By varying the processing parameters such as wavelength, pulse length, fluence and repetition rate, cavities of standardized geometry are fabricated and analyzed. From the depths of the cavities produced, the ablation rate and removal efficiency are estimated. In addition, the quality of the cavities is evaluated by means of scanning electron microscope micrographs or rather surface roughness measurements. From the results obtained, the influence of the machining parameters on material removal and machining quality is discussed. In addition, it is shown that both material removal rate and quality increase by using femtosecond compared to picosecond laser pulses. On stainless steel, a maximum throughput of 6.81 mm 3 /min is achieved with 32 W femtosecond laser powers; if using 187 W picosecond laser powers, the maximum is 15.04 mm 3 /min, respectively. On copper, the maximum throughputs are 6.1 mm 3 /min and 21.4 mm 3 /min, obtained with 32 W femtosecond and 187 W picosecond laser powers. The findings indicate that ultrashort pulses in the mid-fluence regime yield most efficient material removal. In conclusion, from the results of this analysis, a range of optimum processing parameters are derived feasible to enhance machining efficiency, throughput and quality in high-rate micromachining. The work carried out here clearly opens the way to significant industrial applications.</description><identifier>ISSN: 0947-8396</identifier><identifier>EISSN: 1432-0630</identifier><identifier>DOI: 10.1007/s00339-015-9352-4</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Characterization and Evaluation of Materials ; Condensed Matter Physics ; Copper ; Femtosecond ; Holes ; Lasers ; Machines ; Machining ; Manufacturing ; Nanotechnology ; Optical and Electronic Materials ; Physics ; Physics and Astronomy ; Process parameters ; Processes ; Scanning electron microscopy ; Stainless steels ; Surfaces and Interfaces ; Thin Films</subject><ispartof>Applied physics. A, Materials science &amp; processing, 2015-09, Vol.120 (3), p.847-855</ispartof><rights>Springer-Verlag Berlin Heidelberg 2015</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c321t-6917dc226271111e96d9e66e65ca09abab2940944cd26c1508621dcb46d7814d3</citedby><cites>FETCH-LOGICAL-c321t-6917dc226271111e96d9e66e65ca09abab2940944cd26c1508621dcb46d7814d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00339-015-9352-4$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00339-015-9352-4$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Schille, Joerg</creatorcontrib><creatorcontrib>Schneider, Lutz</creatorcontrib><creatorcontrib>Loeschner, Udo</creatorcontrib><title>Process optimization in high-average-power ultrashort pulse laser microfabrication: how laser process parameters influence efficiency, throughput and quality</title><title>Applied physics. A, Materials science &amp; processing</title><addtitle>Appl. Phys. A</addtitle><description>In this paper, laser processing of technical grade stainless steel and copper using high-average-power ultrashort pulse lasers is studied in order to gain deeper insight into material removal for microfabrication. A high-pulse repetition frequency picosecond and femtosecond laser is used in conjunction with high-performance galvanometer scanners and an in-house developed two-axis polygon scanner system. By varying the processing parameters such as wavelength, pulse length, fluence and repetition rate, cavities of standardized geometry are fabricated and analyzed. From the depths of the cavities produced, the ablation rate and removal efficiency are estimated. In addition, the quality of the cavities is evaluated by means of scanning electron microscope micrographs or rather surface roughness measurements. From the results obtained, the influence of the machining parameters on material removal and machining quality is discussed. In addition, it is shown that both material removal rate and quality increase by using femtosecond compared to picosecond laser pulses. On stainless steel, a maximum throughput of 6.81 mm 3 /min is achieved with 32 W femtosecond laser powers; if using 187 W picosecond laser powers, the maximum is 15.04 mm 3 /min, respectively. On copper, the maximum throughputs are 6.1 mm 3 /min and 21.4 mm 3 /min, obtained with 32 W femtosecond and 187 W picosecond laser powers. The findings indicate that ultrashort pulses in the mid-fluence regime yield most efficient material removal. In conclusion, from the results of this analysis, a range of optimum processing parameters are derived feasible to enhance machining efficiency, throughput and quality in high-rate micromachining. The work carried out here clearly opens the way to significant industrial applications.</description><subject>Characterization and Evaluation of Materials</subject><subject>Condensed Matter Physics</subject><subject>Copper</subject><subject>Femtosecond</subject><subject>Holes</subject><subject>Lasers</subject><subject>Machines</subject><subject>Machining</subject><subject>Manufacturing</subject><subject>Nanotechnology</subject><subject>Optical and Electronic Materials</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Process parameters</subject><subject>Processes</subject><subject>Scanning electron microscopy</subject><subject>Stainless steels</subject><subject>Surfaces and Interfaces</subject><subject>Thin Films</subject><issn>0947-8396</issn><issn>1432-0630</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNp9UctO5DAQtBArMbD7AXvzkQMG23GcMTeEeEkjwYE9Wx6nMzFK4uAHo9l_2X9dw8yZvrhlV1W7uhD6zeglo7S5ipRWlSKU1URVNSfiCC2YqDihsqLHaEGVaMiyUvIEncb4RksJzhfo30vwFmLEfk5udH9Ncn7CbsK92_TEfEAwGyCz30LAeUjBxN6HhOc8RMCDieV6dDb4zqyDs1_sa9z77eFtPqjPJpgREoRYtLshw2QBQ9c560q7u8CpDz5v-jknbKYWv2czuLT7iX50pkz6dTjP0J_7u9fbR7J6fni6vVkRW3GWiFSsaS3nkjesFCjZKpASZG0NVWZt1lyJsgFhWy4tq-lSctbatZBts2Sirc7Q-V63_Pc9Q0x6dNHCMJgJfI6aNUJIVQslC5TtocV0jAE6PQc3mrDTjOrPKPQ-Cl2i0J9RaFE4fM-JBTttIOg3n8NUHH1D-g_LbpBg</recordid><startdate>20150901</startdate><enddate>20150901</enddate><creator>Schille, Joerg</creator><creator>Schneider, Lutz</creator><creator>Loeschner, Udo</creator><general>Springer Berlin Heidelberg</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>H8D</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20150901</creationdate><title>Process optimization in high-average-power ultrashort pulse laser microfabrication: how laser process parameters influence efficiency, throughput and quality</title><author>Schille, Joerg ; Schneider, Lutz ; Loeschner, Udo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c321t-6917dc226271111e96d9e66e65ca09abab2940944cd26c1508621dcb46d7814d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Characterization and Evaluation of Materials</topic><topic>Condensed Matter Physics</topic><topic>Copper</topic><topic>Femtosecond</topic><topic>Holes</topic><topic>Lasers</topic><topic>Machines</topic><topic>Machining</topic><topic>Manufacturing</topic><topic>Nanotechnology</topic><topic>Optical and Electronic Materials</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Process parameters</topic><topic>Processes</topic><topic>Scanning electron microscopy</topic><topic>Stainless steels</topic><topic>Surfaces and Interfaces</topic><topic>Thin Films</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Schille, Joerg</creatorcontrib><creatorcontrib>Schneider, Lutz</creatorcontrib><creatorcontrib>Loeschner, Udo</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Applied physics. A, Materials science &amp; processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Schille, Joerg</au><au>Schneider, Lutz</au><au>Loeschner, Udo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Process optimization in high-average-power ultrashort pulse laser microfabrication: how laser process parameters influence efficiency, throughput and quality</atitle><jtitle>Applied physics. A, Materials science &amp; processing</jtitle><stitle>Appl. Phys. A</stitle><date>2015-09-01</date><risdate>2015</risdate><volume>120</volume><issue>3</issue><spage>847</spage><epage>855</epage><pages>847-855</pages><issn>0947-8396</issn><eissn>1432-0630</eissn><abstract>In this paper, laser processing of technical grade stainless steel and copper using high-average-power ultrashort pulse lasers is studied in order to gain deeper insight into material removal for microfabrication. A high-pulse repetition frequency picosecond and femtosecond laser is used in conjunction with high-performance galvanometer scanners and an in-house developed two-axis polygon scanner system. By varying the processing parameters such as wavelength, pulse length, fluence and repetition rate, cavities of standardized geometry are fabricated and analyzed. From the depths of the cavities produced, the ablation rate and removal efficiency are estimated. In addition, the quality of the cavities is evaluated by means of scanning electron microscope micrographs or rather surface roughness measurements. From the results obtained, the influence of the machining parameters on material removal and machining quality is discussed. In addition, it is shown that both material removal rate and quality increase by using femtosecond compared to picosecond laser pulses. On stainless steel, a maximum throughput of 6.81 mm 3 /min is achieved with 32 W femtosecond laser powers; if using 187 W picosecond laser powers, the maximum is 15.04 mm 3 /min, respectively. On copper, the maximum throughputs are 6.1 mm 3 /min and 21.4 mm 3 /min, obtained with 32 W femtosecond and 187 W picosecond laser powers. The findings indicate that ultrashort pulses in the mid-fluence regime yield most efficient material removal. In conclusion, from the results of this analysis, a range of optimum processing parameters are derived feasible to enhance machining efficiency, throughput and quality in high-rate micromachining. The work carried out here clearly opens the way to significant industrial applications.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00339-015-9352-4</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0947-8396
ispartof Applied physics. A, Materials science & processing, 2015-09, Vol.120 (3), p.847-855
issn 0947-8396
1432-0630
language eng
recordid cdi_proquest_miscellaneous_1744695496
source Springer Nature - Complete Springer Journals
subjects Characterization and Evaluation of Materials
Condensed Matter Physics
Copper
Femtosecond
Holes
Lasers
Machines
Machining
Manufacturing
Nanotechnology
Optical and Electronic Materials
Physics
Physics and Astronomy
Process parameters
Processes
Scanning electron microscopy
Stainless steels
Surfaces and Interfaces
Thin Films
title Process optimization in high-average-power ultrashort pulse laser microfabrication: how laser process parameters influence efficiency, throughput and quality
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T01%3A14%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Process%20optimization%20in%20high-average-power%20ultrashort%20pulse%20laser%20microfabrication:%20how%20laser%20process%20parameters%20influence%20efficiency,%20throughput%20and%20quality&rft.jtitle=Applied%20physics.%20A,%20Materials%20science%20&%20processing&rft.au=Schille,%20Joerg&rft.date=2015-09-01&rft.volume=120&rft.issue=3&rft.spage=847&rft.epage=855&rft.pages=847-855&rft.issn=0947-8396&rft.eissn=1432-0630&rft_id=info:doi/10.1007/s00339-015-9352-4&rft_dat=%3Cproquest_cross%3E1744695496%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1744695496&rft_id=info:pmid/&rfr_iscdi=true