Thermodynamic stability of high phosphorus concentration in silicon nanostructures
Doping of Si nanocrystals (NCs) has been the subject of a strong experimental and theoretical debate for more than a decade. A major difficulty in the understanding of dopant incorporation at the nanoscale is related to the fact that theoretical calculations usually refer to thermodynamic equilibriu...
Gespeichert in:
Veröffentlicht in: | Nanoscale 2015-09, Vol.7 (34), p.14469-14475 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 14475 |
---|---|
container_issue | 34 |
container_start_page | 14469 |
container_title | Nanoscale |
container_volume | 7 |
creator | Perego, Michele Seguini, Gabriele Arduca, Elisa Frascaroli, Jacopo De Salvador, Davide Mastromatteo, Massimo Carnera, Alberto Nicotra, Giuseppe Scuderi, Mario Spinella, Corrado Impellizzeri, Giuliana Lenardi, Cristina Napolitani, Enrico |
description | Doping of Si nanocrystals (NCs) has been the subject of a strong experimental and theoretical debate for more than a decade. A major difficulty in the understanding of dopant incorporation at the nanoscale is related to the fact that theoretical calculations usually refer to thermodynamic equilibrium conditions, whereas, from the experimental point of view, impurity incorporation is commonly performed during NC formation. This latter circumstance makes impossible to experimentally decouple equilibrium properties from kinetic effects. In this report, we approach the problem by introducing the dopants into the Si NCs, from a spatially separated dopant source. We induce a P diffusion flux to interact with the already-formed and stable Si NCs embedded in SiO
2
, maintaining the system very close to the thermodynamic equilibrium. Combining advanced material synthesis, multi-technique experimental quantification and simulations of diffusion profiles with a rate-equation model, we demonstrate that a high P concentration (above the P solid solubility in bulk Si) within Si NCs embedded in a SiO
2
matrix corresponds to an equilibrium property of the system. Trapping within the Si NCs embedded in a SiO
2
matrix is essentially diffusion limited with no additional energy barrier, whereas de-trapping is prevented by a binding energy of 0.9 eV, in excellent agreement with recent theoretical findings that highlighted the impact of different surface terminations (H- or O-terminated NCs) on the stability of the incorporated P atoms.
An energy barrier of 0.9 eV guarantees stable incorporation of P atoms in Si nanocrystals embedded in SiO
2
. |
doi_str_mv | 10.1039/c5nr02584b |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1744691687</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1744691687</sourcerecordid><originalsourceid>FETCH-LOGICAL-c434t-8576f461adb9239888273cbe5f2c5164791f56b631fd81d6e7398c4d2f956ed13</originalsourceid><addsrcrecordid>eNp90T1PwzAQBmALgWgpLOwgsyGkgL-djFDxJVUgVWWOEscmQYkdbGfovyfQUjaG053sRze8B8ApRtcY0exGcesR4Skr98CUIIYSSiXZ382CTcBRCB8IiYwKeggmRBAuESZTsFzV2neuWtuiaxQMsSibtolr6Aysm_ca9rULY_khQOWs0jb6IjbOwsbCMNLxEdrCuhD9oOLgdTgGB6Zogz7Z9hl4e7hfzZ-Sxevj8_x2kShGWUxSLoVhAhdVmRGapWlKJFWl5oYojgWTGTZclIJiU6W4ElqOSLGKmIwLXWE6A5ebvb13n4MOMe-aoHTbFla7IeRYMiYyLFI50qsNVd6F4LXJe990hV_nGOXfGeZz_rL8yfBuxOfbvUPZ6WpHf0MbwcUG-KB2v39HyPvKjObsP0O_AA9Rgp8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1744691687</pqid></control><display><type>article</type><title>Thermodynamic stability of high phosphorus concentration in silicon nanostructures</title><source>Royal Society Of Chemistry Journals 2008-</source><source>Alma/SFX Local Collection</source><creator>Perego, Michele ; Seguini, Gabriele ; Arduca, Elisa ; Frascaroli, Jacopo ; De Salvador, Davide ; Mastromatteo, Massimo ; Carnera, Alberto ; Nicotra, Giuseppe ; Scuderi, Mario ; Spinella, Corrado ; Impellizzeri, Giuliana ; Lenardi, Cristina ; Napolitani, Enrico</creator><creatorcontrib>Perego, Michele ; Seguini, Gabriele ; Arduca, Elisa ; Frascaroli, Jacopo ; De Salvador, Davide ; Mastromatteo, Massimo ; Carnera, Alberto ; Nicotra, Giuseppe ; Scuderi, Mario ; Spinella, Corrado ; Impellizzeri, Giuliana ; Lenardi, Cristina ; Napolitani, Enrico</creatorcontrib><description>Doping of Si nanocrystals (NCs) has been the subject of a strong experimental and theoretical debate for more than a decade. A major difficulty in the understanding of dopant incorporation at the nanoscale is related to the fact that theoretical calculations usually refer to thermodynamic equilibrium conditions, whereas, from the experimental point of view, impurity incorporation is commonly performed during NC formation. This latter circumstance makes impossible to experimentally decouple equilibrium properties from kinetic effects. In this report, we approach the problem by introducing the dopants into the Si NCs, from a spatially separated dopant source. We induce a P diffusion flux to interact with the already-formed and stable Si NCs embedded in SiO
2
, maintaining the system very close to the thermodynamic equilibrium. Combining advanced material synthesis, multi-technique experimental quantification and simulations of diffusion profiles with a rate-equation model, we demonstrate that a high P concentration (above the P solid solubility in bulk Si) within Si NCs embedded in a SiO
2
matrix corresponds to an equilibrium property of the system. Trapping within the Si NCs embedded in a SiO
2
matrix is essentially diffusion limited with no additional energy barrier, whereas de-trapping is prevented by a binding energy of 0.9 eV, in excellent agreement with recent theoretical findings that highlighted the impact of different surface terminations (H- or O-terminated NCs) on the stability of the incorporated P atoms.
An energy barrier of 0.9 eV guarantees stable incorporation of P atoms in Si nanocrystals embedded in SiO
2
.</description><identifier>ISSN: 2040-3364</identifier><identifier>EISSN: 2040-3372</identifier><identifier>DOI: 10.1039/c5nr02584b</identifier><identifier>PMID: 26257012</identifier><language>eng</language><publisher>England</publisher><subject>Diffusion ; Dopants ; Embedded systems ; Nanostructure ; Silicon ; Silicon dioxide ; Stability ; Thermodynamic equilibrium</subject><ispartof>Nanoscale, 2015-09, Vol.7 (34), p.14469-14475</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c434t-8576f461adb9239888273cbe5f2c5164791f56b631fd81d6e7398c4d2f956ed13</citedby><cites>FETCH-LOGICAL-c434t-8576f461adb9239888273cbe5f2c5164791f56b631fd81d6e7398c4d2f956ed13</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,27905,27906</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26257012$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Perego, Michele</creatorcontrib><creatorcontrib>Seguini, Gabriele</creatorcontrib><creatorcontrib>Arduca, Elisa</creatorcontrib><creatorcontrib>Frascaroli, Jacopo</creatorcontrib><creatorcontrib>De Salvador, Davide</creatorcontrib><creatorcontrib>Mastromatteo, Massimo</creatorcontrib><creatorcontrib>Carnera, Alberto</creatorcontrib><creatorcontrib>Nicotra, Giuseppe</creatorcontrib><creatorcontrib>Scuderi, Mario</creatorcontrib><creatorcontrib>Spinella, Corrado</creatorcontrib><creatorcontrib>Impellizzeri, Giuliana</creatorcontrib><creatorcontrib>Lenardi, Cristina</creatorcontrib><creatorcontrib>Napolitani, Enrico</creatorcontrib><title>Thermodynamic stability of high phosphorus concentration in silicon nanostructures</title><title>Nanoscale</title><addtitle>Nanoscale</addtitle><description>Doping of Si nanocrystals (NCs) has been the subject of a strong experimental and theoretical debate for more than a decade. A major difficulty in the understanding of dopant incorporation at the nanoscale is related to the fact that theoretical calculations usually refer to thermodynamic equilibrium conditions, whereas, from the experimental point of view, impurity incorporation is commonly performed during NC formation. This latter circumstance makes impossible to experimentally decouple equilibrium properties from kinetic effects. In this report, we approach the problem by introducing the dopants into the Si NCs, from a spatially separated dopant source. We induce a P diffusion flux to interact with the already-formed and stable Si NCs embedded in SiO
2
, maintaining the system very close to the thermodynamic equilibrium. Combining advanced material synthesis, multi-technique experimental quantification and simulations of diffusion profiles with a rate-equation model, we demonstrate that a high P concentration (above the P solid solubility in bulk Si) within Si NCs embedded in a SiO
2
matrix corresponds to an equilibrium property of the system. Trapping within the Si NCs embedded in a SiO
2
matrix is essentially diffusion limited with no additional energy barrier, whereas de-trapping is prevented by a binding energy of 0.9 eV, in excellent agreement with recent theoretical findings that highlighted the impact of different surface terminations (H- or O-terminated NCs) on the stability of the incorporated P atoms.
An energy barrier of 0.9 eV guarantees stable incorporation of P atoms in Si nanocrystals embedded in SiO
2
.</description><subject>Diffusion</subject><subject>Dopants</subject><subject>Embedded systems</subject><subject>Nanostructure</subject><subject>Silicon</subject><subject>Silicon dioxide</subject><subject>Stability</subject><subject>Thermodynamic equilibrium</subject><issn>2040-3364</issn><issn>2040-3372</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNp90T1PwzAQBmALgWgpLOwgsyGkgL-djFDxJVUgVWWOEscmQYkdbGfovyfQUjaG053sRze8B8ApRtcY0exGcesR4Skr98CUIIYSSiXZ382CTcBRCB8IiYwKeggmRBAuESZTsFzV2neuWtuiaxQMsSibtolr6Aysm_ca9rULY_khQOWs0jb6IjbOwsbCMNLxEdrCuhD9oOLgdTgGB6Zogz7Z9hl4e7hfzZ-Sxevj8_x2kShGWUxSLoVhAhdVmRGapWlKJFWl5oYojgWTGTZclIJiU6W4ElqOSLGKmIwLXWE6A5ebvb13n4MOMe-aoHTbFla7IeRYMiYyLFI50qsNVd6F4LXJe990hV_nGOXfGeZz_rL8yfBuxOfbvUPZ6WpHf0MbwcUG-KB2v39HyPvKjObsP0O_AA9Rgp8</recordid><startdate>20150914</startdate><enddate>20150914</enddate><creator>Perego, Michele</creator><creator>Seguini, Gabriele</creator><creator>Arduca, Elisa</creator><creator>Frascaroli, Jacopo</creator><creator>De Salvador, Davide</creator><creator>Mastromatteo, Massimo</creator><creator>Carnera, Alberto</creator><creator>Nicotra, Giuseppe</creator><creator>Scuderi, Mario</creator><creator>Spinella, Corrado</creator><creator>Impellizzeri, Giuliana</creator><creator>Lenardi, Cristina</creator><creator>Napolitani, Enrico</creator><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20150914</creationdate><title>Thermodynamic stability of high phosphorus concentration in silicon nanostructures</title><author>Perego, Michele ; Seguini, Gabriele ; Arduca, Elisa ; Frascaroli, Jacopo ; De Salvador, Davide ; Mastromatteo, Massimo ; Carnera, Alberto ; Nicotra, Giuseppe ; Scuderi, Mario ; Spinella, Corrado ; Impellizzeri, Giuliana ; Lenardi, Cristina ; Napolitani, Enrico</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c434t-8576f461adb9239888273cbe5f2c5164791f56b631fd81d6e7398c4d2f956ed13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Diffusion</topic><topic>Dopants</topic><topic>Embedded systems</topic><topic>Nanostructure</topic><topic>Silicon</topic><topic>Silicon dioxide</topic><topic>Stability</topic><topic>Thermodynamic equilibrium</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Perego, Michele</creatorcontrib><creatorcontrib>Seguini, Gabriele</creatorcontrib><creatorcontrib>Arduca, Elisa</creatorcontrib><creatorcontrib>Frascaroli, Jacopo</creatorcontrib><creatorcontrib>De Salvador, Davide</creatorcontrib><creatorcontrib>Mastromatteo, Massimo</creatorcontrib><creatorcontrib>Carnera, Alberto</creatorcontrib><creatorcontrib>Nicotra, Giuseppe</creatorcontrib><creatorcontrib>Scuderi, Mario</creatorcontrib><creatorcontrib>Spinella, Corrado</creatorcontrib><creatorcontrib>Impellizzeri, Giuliana</creatorcontrib><creatorcontrib>Lenardi, Cristina</creatorcontrib><creatorcontrib>Napolitani, Enrico</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Nanoscale</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Perego, Michele</au><au>Seguini, Gabriele</au><au>Arduca, Elisa</au><au>Frascaroli, Jacopo</au><au>De Salvador, Davide</au><au>Mastromatteo, Massimo</au><au>Carnera, Alberto</au><au>Nicotra, Giuseppe</au><au>Scuderi, Mario</au><au>Spinella, Corrado</au><au>Impellizzeri, Giuliana</au><au>Lenardi, Cristina</au><au>Napolitani, Enrico</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Thermodynamic stability of high phosphorus concentration in silicon nanostructures</atitle><jtitle>Nanoscale</jtitle><addtitle>Nanoscale</addtitle><date>2015-09-14</date><risdate>2015</risdate><volume>7</volume><issue>34</issue><spage>14469</spage><epage>14475</epage><pages>14469-14475</pages><issn>2040-3364</issn><eissn>2040-3372</eissn><abstract>Doping of Si nanocrystals (NCs) has been the subject of a strong experimental and theoretical debate for more than a decade. A major difficulty in the understanding of dopant incorporation at the nanoscale is related to the fact that theoretical calculations usually refer to thermodynamic equilibrium conditions, whereas, from the experimental point of view, impurity incorporation is commonly performed during NC formation. This latter circumstance makes impossible to experimentally decouple equilibrium properties from kinetic effects. In this report, we approach the problem by introducing the dopants into the Si NCs, from a spatially separated dopant source. We induce a P diffusion flux to interact with the already-formed and stable Si NCs embedded in SiO
2
, maintaining the system very close to the thermodynamic equilibrium. Combining advanced material synthesis, multi-technique experimental quantification and simulations of diffusion profiles with a rate-equation model, we demonstrate that a high P concentration (above the P solid solubility in bulk Si) within Si NCs embedded in a SiO
2
matrix corresponds to an equilibrium property of the system. Trapping within the Si NCs embedded in a SiO
2
matrix is essentially diffusion limited with no additional energy barrier, whereas de-trapping is prevented by a binding energy of 0.9 eV, in excellent agreement with recent theoretical findings that highlighted the impact of different surface terminations (H- or O-terminated NCs) on the stability of the incorporated P atoms.
An energy barrier of 0.9 eV guarantees stable incorporation of P atoms in Si nanocrystals embedded in SiO
2
.</abstract><cop>England</cop><pmid>26257012</pmid><doi>10.1039/c5nr02584b</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2040-3364 |
ispartof | Nanoscale, 2015-09, Vol.7 (34), p.14469-14475 |
issn | 2040-3364 2040-3372 |
language | eng |
recordid | cdi_proquest_miscellaneous_1744691687 |
source | Royal Society Of Chemistry Journals 2008-; Alma/SFX Local Collection |
subjects | Diffusion Dopants Embedded systems Nanostructure Silicon Silicon dioxide Stability Thermodynamic equilibrium |
title | Thermodynamic stability of high phosphorus concentration in silicon nanostructures |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T04%3A39%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Thermodynamic%20stability%20of%20high%20phosphorus%20concentration%20in%20silicon%20nanostructures&rft.jtitle=Nanoscale&rft.au=Perego,%20Michele&rft.date=2015-09-14&rft.volume=7&rft.issue=34&rft.spage=14469&rft.epage=14475&rft.pages=14469-14475&rft.issn=2040-3364&rft.eissn=2040-3372&rft_id=info:doi/10.1039/c5nr02584b&rft_dat=%3Cproquest_cross%3E1744691687%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1744691687&rft_id=info:pmid/26257012&rfr_iscdi=true |