Nano-structural changes in Li-ion battery cathodes during cycling revealed by FIB-SEM serial sectioning tomography

The growing demand for reliable, durable electrical energy systems to power electric and hybrid vehicles motivates worldwide efforts aimed at developing high-energy, high-power density batteries. One of the obstacles to widespread industry adoption is the lack of profound understanding and the abili...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of materials chemistry. A, Materials for energy and sustainability Materials for energy and sustainability, 2015-01, Vol.3 (35), p.18171-18179
Hauptverfasser: Song, Bohang, Sui, Tan, Ying, Siqi, Li, Liu, Lu, Li, Korsunsky, Alexander M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 18179
container_issue 35
container_start_page 18171
container_title Journal of materials chemistry. A, Materials for energy and sustainability
container_volume 3
creator Song, Bohang
Sui, Tan
Ying, Siqi
Li, Liu
Lu, Li
Korsunsky, Alexander M.
description The growing demand for reliable, durable electrical energy systems to power electric and hybrid vehicles motivates worldwide efforts aimed at developing high-energy, high-power density batteries. One of the obstacles to widespread industry adoption is the lack of profound understanding and the ability to monitor and control the long-term degradation and capacity fading observed in these systems. Focused Ion Beam-Scanning Electron Microscopy (FIB-SEM) serial sectioning is used to reconstruct the evolution of the three-dimensional structure of Li-ion battery electrodes during extended cycling. High resolution imaging reveals microstructural information at the level of the composite framework consisting of the spheroidal micro-particles of the active material held together by the polymer matrix. The evolution of damage within the micro-particles of the active material can be seen in the form of voiding, cracking and ultimate fragmentation. In particular, when spherical micro-particles of Li-rich layered oxides are used as the cathode, it is found that the extent of fragmentation varied in the direction of Li + diffusion current from the particle surface inwards. We use a simple model of the strain and strain gradient effects of Li + transient diffusion within the electrode to identify the driving force for particle fragmentation, and discuss the implication of these results.
doi_str_mv 10.1039/C5TA04151A
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1744689826</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1744689826</sourcerecordid><originalsourceid>FETCH-LOGICAL-c371t-86ed39443d3fe3c3354011f1cf86bf2868c1dcec602da973b536800c15fb717a3</originalsourceid><addsrcrecordid>eNpFkNFKwzAUhoMoOOZufIJcilBNmjZNLufYdDD1wnld0tPTLdI1M0mFvr0dip6b_8D5-OD8hFxzdseZ0PeLfDtnGc_5_IxMUpazpMi0PP_blboksxA-2DiKMan1hPgX07kkRN9D7L1pKexNt8NAbUc3NrGuo5WJEf1AwcS9q8dT3Xvb7SgM0J7S4xeaFmtaDXS1fkjels80oLejLCDEUXGioju4nTfH_XBFLhrTBpz95pS8r5bbxVOyeX1cL-abBETBY6Ik1kJnmahFgwKEyDPGecOhUbJqUiUV8BoQJEtrowtR5UKOXwHPm6rghRFTcvPjPXr32WOI5cEGwLY1Hbo-lLzIMqm0SuWI3v6g4F0IHpvy6O3B-KHkrDx1W_53K74BKyxsYg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1744689826</pqid></control><display><type>article</type><title>Nano-structural changes in Li-ion battery cathodes during cycling revealed by FIB-SEM serial sectioning tomography</title><source>Royal Society Of Chemistry Journals 2008-</source><source>Alma/SFX Local Collection</source><creator>Song, Bohang ; Sui, Tan ; Ying, Siqi ; Li, Liu ; Lu, Li ; Korsunsky, Alexander M.</creator><creatorcontrib>Song, Bohang ; Sui, Tan ; Ying, Siqi ; Li, Liu ; Lu, Li ; Korsunsky, Alexander M.</creatorcontrib><description>The growing demand for reliable, durable electrical energy systems to power electric and hybrid vehicles motivates worldwide efforts aimed at developing high-energy, high-power density batteries. One of the obstacles to widespread industry adoption is the lack of profound understanding and the ability to monitor and control the long-term degradation and capacity fading observed in these systems. Focused Ion Beam-Scanning Electron Microscopy (FIB-SEM) serial sectioning is used to reconstruct the evolution of the three-dimensional structure of Li-ion battery electrodes during extended cycling. High resolution imaging reveals microstructural information at the level of the composite framework consisting of the spheroidal micro-particles of the active material held together by the polymer matrix. The evolution of damage within the micro-particles of the active material can be seen in the form of voiding, cracking and ultimate fragmentation. In particular, when spherical micro-particles of Li-rich layered oxides are used as the cathode, it is found that the extent of fragmentation varied in the direction of Li + diffusion current from the particle surface inwards. We use a simple model of the strain and strain gradient effects of Li + transient diffusion within the electrode to identify the driving force for particle fragmentation, and discuss the implication of these results.</description><identifier>ISSN: 2050-7488</identifier><identifier>EISSN: 2050-7496</identifier><identifier>DOI: 10.1039/C5TA04151A</identifier><language>eng</language><subject>Cathodes ; Cycles ; Density ; Diffusion ; Evolution ; Fragmentation ; Serials ; Strain</subject><ispartof>Journal of materials chemistry. A, Materials for energy and sustainability, 2015-01, Vol.3 (35), p.18171-18179</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c371t-86ed39443d3fe3c3354011f1cf86bf2868c1dcec602da973b536800c15fb717a3</citedby><cites>FETCH-LOGICAL-c371t-86ed39443d3fe3c3354011f1cf86bf2868c1dcec602da973b536800c15fb717a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,781,785,27929,27930</link.rule.ids></links><search><creatorcontrib>Song, Bohang</creatorcontrib><creatorcontrib>Sui, Tan</creatorcontrib><creatorcontrib>Ying, Siqi</creatorcontrib><creatorcontrib>Li, Liu</creatorcontrib><creatorcontrib>Lu, Li</creatorcontrib><creatorcontrib>Korsunsky, Alexander M.</creatorcontrib><title>Nano-structural changes in Li-ion battery cathodes during cycling revealed by FIB-SEM serial sectioning tomography</title><title>Journal of materials chemistry. A, Materials for energy and sustainability</title><description>The growing demand for reliable, durable electrical energy systems to power electric and hybrid vehicles motivates worldwide efforts aimed at developing high-energy, high-power density batteries. One of the obstacles to widespread industry adoption is the lack of profound understanding and the ability to monitor and control the long-term degradation and capacity fading observed in these systems. Focused Ion Beam-Scanning Electron Microscopy (FIB-SEM) serial sectioning is used to reconstruct the evolution of the three-dimensional structure of Li-ion battery electrodes during extended cycling. High resolution imaging reveals microstructural information at the level of the composite framework consisting of the spheroidal micro-particles of the active material held together by the polymer matrix. The evolution of damage within the micro-particles of the active material can be seen in the form of voiding, cracking and ultimate fragmentation. In particular, when spherical micro-particles of Li-rich layered oxides are used as the cathode, it is found that the extent of fragmentation varied in the direction of Li + diffusion current from the particle surface inwards. We use a simple model of the strain and strain gradient effects of Li + transient diffusion within the electrode to identify the driving force for particle fragmentation, and discuss the implication of these results.</description><subject>Cathodes</subject><subject>Cycles</subject><subject>Density</subject><subject>Diffusion</subject><subject>Evolution</subject><subject>Fragmentation</subject><subject>Serials</subject><subject>Strain</subject><issn>2050-7488</issn><issn>2050-7496</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNpFkNFKwzAUhoMoOOZufIJcilBNmjZNLufYdDD1wnld0tPTLdI1M0mFvr0dip6b_8D5-OD8hFxzdseZ0PeLfDtnGc_5_IxMUpazpMi0PP_blboksxA-2DiKMan1hPgX07kkRN9D7L1pKexNt8NAbUc3NrGuo5WJEf1AwcS9q8dT3Xvb7SgM0J7S4xeaFmtaDXS1fkjels80oLejLCDEUXGioju4nTfH_XBFLhrTBpz95pS8r5bbxVOyeX1cL-abBETBY6Ik1kJnmahFgwKEyDPGecOhUbJqUiUV8BoQJEtrowtR5UKOXwHPm6rghRFTcvPjPXr32WOI5cEGwLY1Hbo-lLzIMqm0SuWI3v6g4F0IHpvy6O3B-KHkrDx1W_53K74BKyxsYg</recordid><startdate>20150101</startdate><enddate>20150101</enddate><creator>Song, Bohang</creator><creator>Sui, Tan</creator><creator>Ying, Siqi</creator><creator>Li, Liu</creator><creator>Lu, Li</creator><creator>Korsunsky, Alexander M.</creator><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>FR3</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20150101</creationdate><title>Nano-structural changes in Li-ion battery cathodes during cycling revealed by FIB-SEM serial sectioning tomography</title><author>Song, Bohang ; Sui, Tan ; Ying, Siqi ; Li, Liu ; Lu, Li ; Korsunsky, Alexander M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c371t-86ed39443d3fe3c3354011f1cf86bf2868c1dcec602da973b536800c15fb717a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Cathodes</topic><topic>Cycles</topic><topic>Density</topic><topic>Diffusion</topic><topic>Evolution</topic><topic>Fragmentation</topic><topic>Serials</topic><topic>Strain</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Song, Bohang</creatorcontrib><creatorcontrib>Sui, Tan</creatorcontrib><creatorcontrib>Ying, Siqi</creatorcontrib><creatorcontrib>Li, Liu</creatorcontrib><creatorcontrib>Lu, Li</creatorcontrib><creatorcontrib>Korsunsky, Alexander M.</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of materials chemistry. A, Materials for energy and sustainability</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Song, Bohang</au><au>Sui, Tan</au><au>Ying, Siqi</au><au>Li, Liu</au><au>Lu, Li</au><au>Korsunsky, Alexander M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nano-structural changes in Li-ion battery cathodes during cycling revealed by FIB-SEM serial sectioning tomography</atitle><jtitle>Journal of materials chemistry. A, Materials for energy and sustainability</jtitle><date>2015-01-01</date><risdate>2015</risdate><volume>3</volume><issue>35</issue><spage>18171</spage><epage>18179</epage><pages>18171-18179</pages><issn>2050-7488</issn><eissn>2050-7496</eissn><abstract>The growing demand for reliable, durable electrical energy systems to power electric and hybrid vehicles motivates worldwide efforts aimed at developing high-energy, high-power density batteries. One of the obstacles to widespread industry adoption is the lack of profound understanding and the ability to monitor and control the long-term degradation and capacity fading observed in these systems. Focused Ion Beam-Scanning Electron Microscopy (FIB-SEM) serial sectioning is used to reconstruct the evolution of the three-dimensional structure of Li-ion battery electrodes during extended cycling. High resolution imaging reveals microstructural information at the level of the composite framework consisting of the spheroidal micro-particles of the active material held together by the polymer matrix. The evolution of damage within the micro-particles of the active material can be seen in the form of voiding, cracking and ultimate fragmentation. In particular, when spherical micro-particles of Li-rich layered oxides are used as the cathode, it is found that the extent of fragmentation varied in the direction of Li + diffusion current from the particle surface inwards. We use a simple model of the strain and strain gradient effects of Li + transient diffusion within the electrode to identify the driving force for particle fragmentation, and discuss the implication of these results.</abstract><doi>10.1039/C5TA04151A</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 2050-7488
ispartof Journal of materials chemistry. A, Materials for energy and sustainability, 2015-01, Vol.3 (35), p.18171-18179
issn 2050-7488
2050-7496
language eng
recordid cdi_proquest_miscellaneous_1744689826
source Royal Society Of Chemistry Journals 2008-; Alma/SFX Local Collection
subjects Cathodes
Cycles
Density
Diffusion
Evolution
Fragmentation
Serials
Strain
title Nano-structural changes in Li-ion battery cathodes during cycling revealed by FIB-SEM serial sectioning tomography
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-11T17%3A32%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nano-structural%20changes%20in%20Li-ion%20battery%20cathodes%20during%20cycling%20revealed%20by%20FIB-SEM%20serial%20sectioning%20tomography&rft.jtitle=Journal%20of%20materials%20chemistry.%20A,%20Materials%20for%20energy%20and%20sustainability&rft.au=Song,%20Bohang&rft.date=2015-01-01&rft.volume=3&rft.issue=35&rft.spage=18171&rft.epage=18179&rft.pages=18171-18179&rft.issn=2050-7488&rft.eissn=2050-7496&rft_id=info:doi/10.1039/C5TA04151A&rft_dat=%3Cproquest_cross%3E1744689826%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1744689826&rft_id=info:pmid/&rfr_iscdi=true