Nano-structural changes in Li-ion battery cathodes during cycling revealed by FIB-SEM serial sectioning tomography
The growing demand for reliable, durable electrical energy systems to power electric and hybrid vehicles motivates worldwide efforts aimed at developing high-energy, high-power density batteries. One of the obstacles to widespread industry adoption is the lack of profound understanding and the abili...
Gespeichert in:
Veröffentlicht in: | Journal of materials chemistry. A, Materials for energy and sustainability Materials for energy and sustainability, 2015-01, Vol.3 (35), p.18171-18179 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 18179 |
---|---|
container_issue | 35 |
container_start_page | 18171 |
container_title | Journal of materials chemistry. A, Materials for energy and sustainability |
container_volume | 3 |
creator | Song, Bohang Sui, Tan Ying, Siqi Li, Liu Lu, Li Korsunsky, Alexander M. |
description | The growing demand for reliable, durable electrical energy systems to power electric and hybrid vehicles motivates worldwide efforts aimed at developing high-energy, high-power density batteries. One of the obstacles to widespread industry adoption is the lack of profound understanding and the ability to monitor and control the long-term degradation and capacity fading observed in these systems. Focused Ion Beam-Scanning Electron Microscopy (FIB-SEM) serial sectioning is used to reconstruct the evolution of the three-dimensional structure of Li-ion battery electrodes during extended cycling. High resolution imaging reveals microstructural information at the level of the composite framework consisting of the spheroidal micro-particles of the active material held together by the polymer matrix. The evolution of damage within the micro-particles of the active material can be seen in the form of voiding, cracking and ultimate fragmentation. In particular, when spherical micro-particles of Li-rich layered oxides are used as the cathode, it is found that the extent of fragmentation varied in the direction of Li
+
diffusion current from the particle surface inwards. We use a simple model of the strain and strain gradient effects of Li
+
transient diffusion within the electrode to identify the driving force for particle fragmentation, and discuss the implication of these results. |
doi_str_mv | 10.1039/C5TA04151A |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1744689826</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1744689826</sourcerecordid><originalsourceid>FETCH-LOGICAL-c371t-86ed39443d3fe3c3354011f1cf86bf2868c1dcec602da973b536800c15fb717a3</originalsourceid><addsrcrecordid>eNpFkNFKwzAUhoMoOOZufIJcilBNmjZNLufYdDD1wnld0tPTLdI1M0mFvr0dip6b_8D5-OD8hFxzdseZ0PeLfDtnGc_5_IxMUpazpMi0PP_blboksxA-2DiKMan1hPgX07kkRN9D7L1pKexNt8NAbUc3NrGuo5WJEf1AwcS9q8dT3Xvb7SgM0J7S4xeaFmtaDXS1fkjels80oLejLCDEUXGioju4nTfH_XBFLhrTBpz95pS8r5bbxVOyeX1cL-abBETBY6Ik1kJnmahFgwKEyDPGecOhUbJqUiUV8BoQJEtrowtR5UKOXwHPm6rghRFTcvPjPXr32WOI5cEGwLY1Hbo-lLzIMqm0SuWI3v6g4F0IHpvy6O3B-KHkrDx1W_53K74BKyxsYg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1744689826</pqid></control><display><type>article</type><title>Nano-structural changes in Li-ion battery cathodes during cycling revealed by FIB-SEM serial sectioning tomography</title><source>Royal Society Of Chemistry Journals 2008-</source><source>Alma/SFX Local Collection</source><creator>Song, Bohang ; Sui, Tan ; Ying, Siqi ; Li, Liu ; Lu, Li ; Korsunsky, Alexander M.</creator><creatorcontrib>Song, Bohang ; Sui, Tan ; Ying, Siqi ; Li, Liu ; Lu, Li ; Korsunsky, Alexander M.</creatorcontrib><description>The growing demand for reliable, durable electrical energy systems to power electric and hybrid vehicles motivates worldwide efforts aimed at developing high-energy, high-power density batteries. One of the obstacles to widespread industry adoption is the lack of profound understanding and the ability to monitor and control the long-term degradation and capacity fading observed in these systems. Focused Ion Beam-Scanning Electron Microscopy (FIB-SEM) serial sectioning is used to reconstruct the evolution of the three-dimensional structure of Li-ion battery electrodes during extended cycling. High resolution imaging reveals microstructural information at the level of the composite framework consisting of the spheroidal micro-particles of the active material held together by the polymer matrix. The evolution of damage within the micro-particles of the active material can be seen in the form of voiding, cracking and ultimate fragmentation. In particular, when spherical micro-particles of Li-rich layered oxides are used as the cathode, it is found that the extent of fragmentation varied in the direction of Li
+
diffusion current from the particle surface inwards. We use a simple model of the strain and strain gradient effects of Li
+
transient diffusion within the electrode to identify the driving force for particle fragmentation, and discuss the implication of these results.</description><identifier>ISSN: 2050-7488</identifier><identifier>EISSN: 2050-7496</identifier><identifier>DOI: 10.1039/C5TA04151A</identifier><language>eng</language><subject>Cathodes ; Cycles ; Density ; Diffusion ; Evolution ; Fragmentation ; Serials ; Strain</subject><ispartof>Journal of materials chemistry. A, Materials for energy and sustainability, 2015-01, Vol.3 (35), p.18171-18179</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c371t-86ed39443d3fe3c3354011f1cf86bf2868c1dcec602da973b536800c15fb717a3</citedby><cites>FETCH-LOGICAL-c371t-86ed39443d3fe3c3354011f1cf86bf2868c1dcec602da973b536800c15fb717a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,781,785,27929,27930</link.rule.ids></links><search><creatorcontrib>Song, Bohang</creatorcontrib><creatorcontrib>Sui, Tan</creatorcontrib><creatorcontrib>Ying, Siqi</creatorcontrib><creatorcontrib>Li, Liu</creatorcontrib><creatorcontrib>Lu, Li</creatorcontrib><creatorcontrib>Korsunsky, Alexander M.</creatorcontrib><title>Nano-structural changes in Li-ion battery cathodes during cycling revealed by FIB-SEM serial sectioning tomography</title><title>Journal of materials chemistry. A, Materials for energy and sustainability</title><description>The growing demand for reliable, durable electrical energy systems to power electric and hybrid vehicles motivates worldwide efforts aimed at developing high-energy, high-power density batteries. One of the obstacles to widespread industry adoption is the lack of profound understanding and the ability to monitor and control the long-term degradation and capacity fading observed in these systems. Focused Ion Beam-Scanning Electron Microscopy (FIB-SEM) serial sectioning is used to reconstruct the evolution of the three-dimensional structure of Li-ion battery electrodes during extended cycling. High resolution imaging reveals microstructural information at the level of the composite framework consisting of the spheroidal micro-particles of the active material held together by the polymer matrix. The evolution of damage within the micro-particles of the active material can be seen in the form of voiding, cracking and ultimate fragmentation. In particular, when spherical micro-particles of Li-rich layered oxides are used as the cathode, it is found that the extent of fragmentation varied in the direction of Li
+
diffusion current from the particle surface inwards. We use a simple model of the strain and strain gradient effects of Li
+
transient diffusion within the electrode to identify the driving force for particle fragmentation, and discuss the implication of these results.</description><subject>Cathodes</subject><subject>Cycles</subject><subject>Density</subject><subject>Diffusion</subject><subject>Evolution</subject><subject>Fragmentation</subject><subject>Serials</subject><subject>Strain</subject><issn>2050-7488</issn><issn>2050-7496</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNpFkNFKwzAUhoMoOOZufIJcilBNmjZNLufYdDD1wnld0tPTLdI1M0mFvr0dip6b_8D5-OD8hFxzdseZ0PeLfDtnGc_5_IxMUpazpMi0PP_blboksxA-2DiKMan1hPgX07kkRN9D7L1pKexNt8NAbUc3NrGuo5WJEf1AwcS9q8dT3Xvb7SgM0J7S4xeaFmtaDXS1fkjels80oLejLCDEUXGioju4nTfH_XBFLhrTBpz95pS8r5bbxVOyeX1cL-abBETBY6Ik1kJnmahFgwKEyDPGecOhUbJqUiUV8BoQJEtrowtR5UKOXwHPm6rghRFTcvPjPXr32WOI5cEGwLY1Hbo-lLzIMqm0SuWI3v6g4F0IHpvy6O3B-KHkrDx1W_53K74BKyxsYg</recordid><startdate>20150101</startdate><enddate>20150101</enddate><creator>Song, Bohang</creator><creator>Sui, Tan</creator><creator>Ying, Siqi</creator><creator>Li, Liu</creator><creator>Lu, Li</creator><creator>Korsunsky, Alexander M.</creator><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>FR3</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20150101</creationdate><title>Nano-structural changes in Li-ion battery cathodes during cycling revealed by FIB-SEM serial sectioning tomography</title><author>Song, Bohang ; Sui, Tan ; Ying, Siqi ; Li, Liu ; Lu, Li ; Korsunsky, Alexander M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c371t-86ed39443d3fe3c3354011f1cf86bf2868c1dcec602da973b536800c15fb717a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Cathodes</topic><topic>Cycles</topic><topic>Density</topic><topic>Diffusion</topic><topic>Evolution</topic><topic>Fragmentation</topic><topic>Serials</topic><topic>Strain</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Song, Bohang</creatorcontrib><creatorcontrib>Sui, Tan</creatorcontrib><creatorcontrib>Ying, Siqi</creatorcontrib><creatorcontrib>Li, Liu</creatorcontrib><creatorcontrib>Lu, Li</creatorcontrib><creatorcontrib>Korsunsky, Alexander M.</creatorcontrib><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of materials chemistry. A, Materials for energy and sustainability</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Song, Bohang</au><au>Sui, Tan</au><au>Ying, Siqi</au><au>Li, Liu</au><au>Lu, Li</au><au>Korsunsky, Alexander M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nano-structural changes in Li-ion battery cathodes during cycling revealed by FIB-SEM serial sectioning tomography</atitle><jtitle>Journal of materials chemistry. A, Materials for energy and sustainability</jtitle><date>2015-01-01</date><risdate>2015</risdate><volume>3</volume><issue>35</issue><spage>18171</spage><epage>18179</epage><pages>18171-18179</pages><issn>2050-7488</issn><eissn>2050-7496</eissn><abstract>The growing demand for reliable, durable electrical energy systems to power electric and hybrid vehicles motivates worldwide efforts aimed at developing high-energy, high-power density batteries. One of the obstacles to widespread industry adoption is the lack of profound understanding and the ability to monitor and control the long-term degradation and capacity fading observed in these systems. Focused Ion Beam-Scanning Electron Microscopy (FIB-SEM) serial sectioning is used to reconstruct the evolution of the three-dimensional structure of Li-ion battery electrodes during extended cycling. High resolution imaging reveals microstructural information at the level of the composite framework consisting of the spheroidal micro-particles of the active material held together by the polymer matrix. The evolution of damage within the micro-particles of the active material can be seen in the form of voiding, cracking and ultimate fragmentation. In particular, when spherical micro-particles of Li-rich layered oxides are used as the cathode, it is found that the extent of fragmentation varied in the direction of Li
+
diffusion current from the particle surface inwards. We use a simple model of the strain and strain gradient effects of Li
+
transient diffusion within the electrode to identify the driving force for particle fragmentation, and discuss the implication of these results.</abstract><doi>10.1039/C5TA04151A</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2050-7488 |
ispartof | Journal of materials chemistry. A, Materials for energy and sustainability, 2015-01, Vol.3 (35), p.18171-18179 |
issn | 2050-7488 2050-7496 |
language | eng |
recordid | cdi_proquest_miscellaneous_1744689826 |
source | Royal Society Of Chemistry Journals 2008-; Alma/SFX Local Collection |
subjects | Cathodes Cycles Density Diffusion Evolution Fragmentation Serials Strain |
title | Nano-structural changes in Li-ion battery cathodes during cycling revealed by FIB-SEM serial sectioning tomography |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-11T17%3A32%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nano-structural%20changes%20in%20Li-ion%20battery%20cathodes%20during%20cycling%20revealed%20by%20FIB-SEM%20serial%20sectioning%20tomography&rft.jtitle=Journal%20of%20materials%20chemistry.%20A,%20Materials%20for%20energy%20and%20sustainability&rft.au=Song,%20Bohang&rft.date=2015-01-01&rft.volume=3&rft.issue=35&rft.spage=18171&rft.epage=18179&rft.pages=18171-18179&rft.issn=2050-7488&rft.eissn=2050-7496&rft_id=info:doi/10.1039/C5TA04151A&rft_dat=%3Cproquest_cross%3E1744689826%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1744689826&rft_id=info:pmid/&rfr_iscdi=true |