A temperature related study on bifurcation strain and force of carbon nanotubes

[Display omitted] •A continuum theory incorporating interatomic potentials and finite temperature is developed.•Bifurcation strain and force of single-walled carbon nanotube with thermo effect is studied.•The relation between the bifurcation strain of SWNT and the finite temperature is obtained.•The...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computational materials science 2015-11, Vol.109, p.129-136
Hauptverfasser: Zhao, Huichuan, Bian, Lichun, Pan, Jing
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 136
container_issue
container_start_page 129
container_title Computational materials science
container_volume 109
creator Zhao, Huichuan
Bian, Lichun
Pan, Jing
description [Display omitted] •A continuum theory incorporating interatomic potentials and finite temperature is developed.•Bifurcation strain and force of single-walled carbon nanotube with thermo effect is studied.•The relation between the bifurcation strain of SWNT and the finite temperature is obtained.•The relation between Young’s modulus and the temperature is also investigated.•Bifurcation strain of SWNT under tension decreases with the increase of temperature. In this paper, a new continuum theory incorporating interatomic potentials and finite temperature is developed to study the bifurcation strain and force of single-walled carbon nanotube (SWNT) under the action of tension. The effect of a finite temperature is studied using the Helmholtz free energy and the local harmonic approximation. The bifurcation strain and force of SWNT subjected to tension versus finite temperatures are predicted. It is found that the bifurcation strain of SWNT under the tension decreases almost monotonically with increasing temperatures. The bifurcation force of SWNT decreases with increasing temperatures, however, it increases with the increase of bifurcation strain and radius of SWNT. The relation between Young’s modulus and the temperature is also investigated.
doi_str_mv 10.1016/j.commatsci.2015.07.015
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1744685365</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0927025615004255</els_id><sourcerecordid>1744685365</sourcerecordid><originalsourceid>FETCH-LOGICAL-c348t-a6e7b96938ec1042cf2939ad2bf34d3946a01fb93fd01e3fe79251777d7a9fef3</originalsourceid><addsrcrecordid>eNqFkEtLxDAUhYMoOI7-BrN005pH2zTLYfAFA7PRdUiTG8jQNmOSCvPvjYy4dXUO3O8cuAehe0pqSmj3eKhNmCadk_E1I7StiaiLXKAV7YWsSE_oJVoRyURFWNtdo5uUDqQkZc9WaL_BGaYjRJ2XCDjCqDNYnPJiTzjMePBuiUZnX3zKUfsZ69liF6IBHBw2Og7lNOs55GWAdIuunB4T3P3qGn08P71vX6vd_uVtu9lVhjd9rnQHYpCd5D0YShpmHJNcassGxxvLZdNpQt0gubOEAncgJGupEMIKLR04vkYP595jDJ8LpKwmnwyMo54hLElR0TRd3_KuLag4oyaGlCI4dYx-0vGkKFE_E6qD-ptQ_UyoiFBFSnJzTkL55MtDVIWA2YD1EUxWNvh_O74ByLJ_pw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1744685365</pqid></control><display><type>article</type><title>A temperature related study on bifurcation strain and force of carbon nanotubes</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Zhao, Huichuan ; Bian, Lichun ; Pan, Jing</creator><creatorcontrib>Zhao, Huichuan ; Bian, Lichun ; Pan, Jing</creatorcontrib><description>[Display omitted] •A continuum theory incorporating interatomic potentials and finite temperature is developed.•Bifurcation strain and force of single-walled carbon nanotube with thermo effect is studied.•The relation between the bifurcation strain of SWNT and the finite temperature is obtained.•The relation between Young’s modulus and the temperature is also investigated.•Bifurcation strain of SWNT under tension decreases with the increase of temperature. In this paper, a new continuum theory incorporating interatomic potentials and finite temperature is developed to study the bifurcation strain and force of single-walled carbon nanotube (SWNT) under the action of tension. The effect of a finite temperature is studied using the Helmholtz free energy and the local harmonic approximation. The bifurcation strain and force of SWNT subjected to tension versus finite temperatures are predicted. It is found that the bifurcation strain of SWNT under the tension decreases almost monotonically with increasing temperatures. The bifurcation force of SWNT decreases with increasing temperatures, however, it increases with the increase of bifurcation strain and radius of SWNT. The relation between Young’s modulus and the temperature is also investigated.</description><identifier>ISSN: 0927-0256</identifier><identifier>EISSN: 1879-0801</identifier><identifier>DOI: 10.1016/j.commatsci.2015.07.015</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Approximation ; Bifurcations ; Continuum theory ; Continuums ; Finite temperature ; Free energy ; Helmholtz free energy ; Interatomic potential ; Local harmonic approximation ; Mathematical analysis ; Modulus of elasticity ; Single wall carbon nanotubes ; Strain</subject><ispartof>Computational materials science, 2015-11, Vol.109, p.129-136</ispartof><rights>2015 Elsevier B.V.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c348t-a6e7b96938ec1042cf2939ad2bf34d3946a01fb93fd01e3fe79251777d7a9fef3</citedby><cites>FETCH-LOGICAL-c348t-a6e7b96938ec1042cf2939ad2bf34d3946a01fb93fd01e3fe79251777d7a9fef3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0927025615004255$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65534</link.rule.ids></links><search><creatorcontrib>Zhao, Huichuan</creatorcontrib><creatorcontrib>Bian, Lichun</creatorcontrib><creatorcontrib>Pan, Jing</creatorcontrib><title>A temperature related study on bifurcation strain and force of carbon nanotubes</title><title>Computational materials science</title><description>[Display omitted] •A continuum theory incorporating interatomic potentials and finite temperature is developed.•Bifurcation strain and force of single-walled carbon nanotube with thermo effect is studied.•The relation between the bifurcation strain of SWNT and the finite temperature is obtained.•The relation between Young’s modulus and the temperature is also investigated.•Bifurcation strain of SWNT under tension decreases with the increase of temperature. In this paper, a new continuum theory incorporating interatomic potentials and finite temperature is developed to study the bifurcation strain and force of single-walled carbon nanotube (SWNT) under the action of tension. The effect of a finite temperature is studied using the Helmholtz free energy and the local harmonic approximation. The bifurcation strain and force of SWNT subjected to tension versus finite temperatures are predicted. It is found that the bifurcation strain of SWNT under the tension decreases almost monotonically with increasing temperatures. The bifurcation force of SWNT decreases with increasing temperatures, however, it increases with the increase of bifurcation strain and radius of SWNT. The relation between Young’s modulus and the temperature is also investigated.</description><subject>Approximation</subject><subject>Bifurcations</subject><subject>Continuum theory</subject><subject>Continuums</subject><subject>Finite temperature</subject><subject>Free energy</subject><subject>Helmholtz free energy</subject><subject>Interatomic potential</subject><subject>Local harmonic approximation</subject><subject>Mathematical analysis</subject><subject>Modulus of elasticity</subject><subject>Single wall carbon nanotubes</subject><subject>Strain</subject><issn>0927-0256</issn><issn>1879-0801</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNqFkEtLxDAUhYMoOI7-BrN005pH2zTLYfAFA7PRdUiTG8jQNmOSCvPvjYy4dXUO3O8cuAehe0pqSmj3eKhNmCadk_E1I7StiaiLXKAV7YWsSE_oJVoRyURFWNtdo5uUDqQkZc9WaL_BGaYjRJ2XCDjCqDNYnPJiTzjMePBuiUZnX3zKUfsZ69liF6IBHBw2Og7lNOs55GWAdIuunB4T3P3qGn08P71vX6vd_uVtu9lVhjd9rnQHYpCd5D0YShpmHJNcassGxxvLZdNpQt0gubOEAncgJGupEMIKLR04vkYP595jDJ8LpKwmnwyMo54hLElR0TRd3_KuLag4oyaGlCI4dYx-0vGkKFE_E6qD-ptQ_UyoiFBFSnJzTkL55MtDVIWA2YD1EUxWNvh_O74ByLJ_pw</recordid><startdate>20151101</startdate><enddate>20151101</enddate><creator>Zhao, Huichuan</creator><creator>Bian, Lichun</creator><creator>Pan, Jing</creator><general>Elsevier B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20151101</creationdate><title>A temperature related study on bifurcation strain and force of carbon nanotubes</title><author>Zhao, Huichuan ; Bian, Lichun ; Pan, Jing</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c348t-a6e7b96938ec1042cf2939ad2bf34d3946a01fb93fd01e3fe79251777d7a9fef3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Approximation</topic><topic>Bifurcations</topic><topic>Continuum theory</topic><topic>Continuums</topic><topic>Finite temperature</topic><topic>Free energy</topic><topic>Helmholtz free energy</topic><topic>Interatomic potential</topic><topic>Local harmonic approximation</topic><topic>Mathematical analysis</topic><topic>Modulus of elasticity</topic><topic>Single wall carbon nanotubes</topic><topic>Strain</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhao, Huichuan</creatorcontrib><creatorcontrib>Bian, Lichun</creatorcontrib><creatorcontrib>Pan, Jing</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Computational materials science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhao, Huichuan</au><au>Bian, Lichun</au><au>Pan, Jing</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A temperature related study on bifurcation strain and force of carbon nanotubes</atitle><jtitle>Computational materials science</jtitle><date>2015-11-01</date><risdate>2015</risdate><volume>109</volume><spage>129</spage><epage>136</epage><pages>129-136</pages><issn>0927-0256</issn><eissn>1879-0801</eissn><abstract>[Display omitted] •A continuum theory incorporating interatomic potentials and finite temperature is developed.•Bifurcation strain and force of single-walled carbon nanotube with thermo effect is studied.•The relation between the bifurcation strain of SWNT and the finite temperature is obtained.•The relation between Young’s modulus and the temperature is also investigated.•Bifurcation strain of SWNT under tension decreases with the increase of temperature. In this paper, a new continuum theory incorporating interatomic potentials and finite temperature is developed to study the bifurcation strain and force of single-walled carbon nanotube (SWNT) under the action of tension. The effect of a finite temperature is studied using the Helmholtz free energy and the local harmonic approximation. The bifurcation strain and force of SWNT subjected to tension versus finite temperatures are predicted. It is found that the bifurcation strain of SWNT under the tension decreases almost monotonically with increasing temperatures. The bifurcation force of SWNT decreases with increasing temperatures, however, it increases with the increase of bifurcation strain and radius of SWNT. The relation between Young’s modulus and the temperature is also investigated.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.commatsci.2015.07.015</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0927-0256
ispartof Computational materials science, 2015-11, Vol.109, p.129-136
issn 0927-0256
1879-0801
language eng
recordid cdi_proquest_miscellaneous_1744685365
source Elsevier ScienceDirect Journals Complete
subjects Approximation
Bifurcations
Continuum theory
Continuums
Finite temperature
Free energy
Helmholtz free energy
Interatomic potential
Local harmonic approximation
Mathematical analysis
Modulus of elasticity
Single wall carbon nanotubes
Strain
title A temperature related study on bifurcation strain and force of carbon nanotubes
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-20T21%3A17%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20temperature%20related%20study%20on%20bifurcation%20strain%20and%20force%20of%20carbon%20nanotubes&rft.jtitle=Computational%20materials%20science&rft.au=Zhao,%20Huichuan&rft.date=2015-11-01&rft.volume=109&rft.spage=129&rft.epage=136&rft.pages=129-136&rft.issn=0927-0256&rft.eissn=1879-0801&rft_id=info:doi/10.1016/j.commatsci.2015.07.015&rft_dat=%3Cproquest_cross%3E1744685365%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1744685365&rft_id=info:pmid/&rft_els_id=S0927025615004255&rfr_iscdi=true