Boundary concentrated finite elements for optimal control problems with distributed observation

We consider the discretization of an optimal boundary control problem with distributed observation by the boundary concentrated finite element method. If the constraint is a H 1 + δ ( Ω ) regular elliptic PDE with smooth differential operator and source term, we prove for the two dimensional case th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computational optimization and applications 2015-09, Vol.62 (1), p.31-65
Hauptverfasser: Beuchler, S., Hofer, K., Wachsmuth, D., Wurst, J.-E.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 65
container_issue 1
container_start_page 31
container_title Computational optimization and applications
container_volume 62
creator Beuchler, S.
Hofer, K.
Wachsmuth, D.
Wurst, J.-E.
description We consider the discretization of an optimal boundary control problem with distributed observation by the boundary concentrated finite element method. If the constraint is a H 1 + δ ( Ω ) regular elliptic PDE with smooth differential operator and source term, we prove for the two dimensional case that the discretization error in the L 2 norm decreases like N - δ , where N is the number of unknowns. Our approach is suitable for solving a wide class of problems, among them piecewise defined data and tracking functionals acting only on a subdomain of Ω . We present several numerical results.
doi_str_mv 10.1007/s10589-015-9737-5
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1744685311</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1744685311</sourcerecordid><originalsourceid>FETCH-LOGICAL-c349t-f769e53d4b23231ca04eb3ca719428d2a685f14a63626c6ef3fd1340548f6f3f3</originalsourceid><addsrcrecordid>eNp1kEtLxDAYRYMoOI7-AHcBN26iebdd6uALBtzoOqRpohk6zZikyvx7U-pCBFchybmX7zsAnBN8RTCurhPBom4QJgI1FauQOAALIiqGaN3wQ7DADZVIYsyOwUlKG4xxwegCqNswDp2Oe2jCYOyQo862g84PPltoe7stbwm6EGHYZb_V_QTmGHq4i6Et_wl--fwOO59y9O04pUObbPzU2YfhFBw53Sd79nMuwev93cvqEa2fH55WN2tkGG8ycpVsrGAdbymjjBiNuW2Z0RVpOK07qmUtHOFaMkmlkdYx1xHGseC1k-XCluBy7i1TfYw2ZbX1ydi-14MNY1Kk4rx0MEIKevEH3YQxDmW6QpXGopPVhSIzZWJIKVqndrGsH_eKYDUpV7NyVZSrSbkSJUPnTCrs8Gbjr-Z_Q98224T5</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1705400738</pqid></control><display><type>article</type><title>Boundary concentrated finite elements for optimal control problems with distributed observation</title><source>Business Source Complete</source><source>SpringerLink Journals - AutoHoldings</source><creator>Beuchler, S. ; Hofer, K. ; Wachsmuth, D. ; Wurst, J.-E.</creator><creatorcontrib>Beuchler, S. ; Hofer, K. ; Wachsmuth, D. ; Wurst, J.-E.</creatorcontrib><description>We consider the discretization of an optimal boundary control problem with distributed observation by the boundary concentrated finite element method. If the constraint is a H 1 + δ ( Ω ) regular elliptic PDE with smooth differential operator and source term, we prove for the two dimensional case that the discretization error in the L 2 norm decreases like N - δ , where N is the number of unknowns. Our approach is suitable for solving a wide class of problems, among them piecewise defined data and tracking functionals acting only on a subdomain of Ω . We present several numerical results.</description><identifier>ISSN: 0926-6003</identifier><identifier>EISSN: 1573-2894</identifier><identifier>DOI: 10.1007/s10589-015-9737-5</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Approximation ; Boundary conditions ; Boundary element method ; Control theory ; Convex and Discrete Geometry ; Differential equations ; Discretization ; Estimates ; Finite element analysis ; Finite element method ; Management Science ; Mathematical analysis ; Mathematics ; Mathematics and Statistics ; Norms ; Operations Research ; Operations Research/Decision Theory ; Optimization ; Partial differential equations ; Statistics ; Studies ; Texts ; Tracking</subject><ispartof>Computational optimization and applications, 2015-09, Vol.62 (1), p.31-65</ispartof><rights>Springer Science+Business Media New York 2015</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c349t-f769e53d4b23231ca04eb3ca719428d2a685f14a63626c6ef3fd1340548f6f3f3</citedby><cites>FETCH-LOGICAL-c349t-f769e53d4b23231ca04eb3ca719428d2a685f14a63626c6ef3fd1340548f6f3f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10589-015-9737-5$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10589-015-9737-5$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Beuchler, S.</creatorcontrib><creatorcontrib>Hofer, K.</creatorcontrib><creatorcontrib>Wachsmuth, D.</creatorcontrib><creatorcontrib>Wurst, J.-E.</creatorcontrib><title>Boundary concentrated finite elements for optimal control problems with distributed observation</title><title>Computational optimization and applications</title><addtitle>Comput Optim Appl</addtitle><description>We consider the discretization of an optimal boundary control problem with distributed observation by the boundary concentrated finite element method. If the constraint is a H 1 + δ ( Ω ) regular elliptic PDE with smooth differential operator and source term, we prove for the two dimensional case that the discretization error in the L 2 norm decreases like N - δ , where N is the number of unknowns. Our approach is suitable for solving a wide class of problems, among them piecewise defined data and tracking functionals acting only on a subdomain of Ω . We present several numerical results.</description><subject>Approximation</subject><subject>Boundary conditions</subject><subject>Boundary element method</subject><subject>Control theory</subject><subject>Convex and Discrete Geometry</subject><subject>Differential equations</subject><subject>Discretization</subject><subject>Estimates</subject><subject>Finite element analysis</subject><subject>Finite element method</subject><subject>Management Science</subject><subject>Mathematical analysis</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Norms</subject><subject>Operations Research</subject><subject>Operations Research/Decision Theory</subject><subject>Optimization</subject><subject>Partial differential equations</subject><subject>Statistics</subject><subject>Studies</subject><subject>Texts</subject><subject>Tracking</subject><issn>0926-6003</issn><issn>1573-2894</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kEtLxDAYRYMoOI7-AHcBN26iebdd6uALBtzoOqRpohk6zZikyvx7U-pCBFchybmX7zsAnBN8RTCurhPBom4QJgI1FauQOAALIiqGaN3wQ7DADZVIYsyOwUlKG4xxwegCqNswDp2Oe2jCYOyQo862g84PPltoe7stbwm6EGHYZb_V_QTmGHq4i6Et_wl--fwOO59y9O04pUObbPzU2YfhFBw53Sd79nMuwev93cvqEa2fH55WN2tkGG8ycpVsrGAdbymjjBiNuW2Z0RVpOK07qmUtHOFaMkmlkdYx1xHGseC1k-XCluBy7i1TfYw2ZbX1ydi-14MNY1Kk4rx0MEIKevEH3YQxDmW6QpXGopPVhSIzZWJIKVqndrGsH_eKYDUpV7NyVZSrSbkSJUPnTCrs8Gbjr-Z_Q98224T5</recordid><startdate>20150901</startdate><enddate>20150901</enddate><creator>Beuchler, S.</creator><creator>Hofer, K.</creator><creator>Wachsmuth, D.</creator><creator>Wurst, J.-E.</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>88I</scope><scope>8AL</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>L.-</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M0N</scope><scope>M2P</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope></search><sort><creationdate>20150901</creationdate><title>Boundary concentrated finite elements for optimal control problems with distributed observation</title><author>Beuchler, S. ; Hofer, K. ; Wachsmuth, D. ; Wurst, J.-E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c349t-f769e53d4b23231ca04eb3ca719428d2a685f14a63626c6ef3fd1340548f6f3f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Approximation</topic><topic>Boundary conditions</topic><topic>Boundary element method</topic><topic>Control theory</topic><topic>Convex and Discrete Geometry</topic><topic>Differential equations</topic><topic>Discretization</topic><topic>Estimates</topic><topic>Finite element analysis</topic><topic>Finite element method</topic><topic>Management Science</topic><topic>Mathematical analysis</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Norms</topic><topic>Operations Research</topic><topic>Operations Research/Decision Theory</topic><topic>Optimization</topic><topic>Partial differential equations</topic><topic>Statistics</topic><topic>Studies</topic><topic>Texts</topic><topic>Tracking</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Beuchler, S.</creatorcontrib><creatorcontrib>Hofer, K.</creatorcontrib><creatorcontrib>Wachsmuth, D.</creatorcontrib><creatorcontrib>Wurst, J.-E.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM Global</collection><collection>Computing Database</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Computational optimization and applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Beuchler, S.</au><au>Hofer, K.</au><au>Wachsmuth, D.</au><au>Wurst, J.-E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Boundary concentrated finite elements for optimal control problems with distributed observation</atitle><jtitle>Computational optimization and applications</jtitle><stitle>Comput Optim Appl</stitle><date>2015-09-01</date><risdate>2015</risdate><volume>62</volume><issue>1</issue><spage>31</spage><epage>65</epage><pages>31-65</pages><issn>0926-6003</issn><eissn>1573-2894</eissn><abstract>We consider the discretization of an optimal boundary control problem with distributed observation by the boundary concentrated finite element method. If the constraint is a H 1 + δ ( Ω ) regular elliptic PDE with smooth differential operator and source term, we prove for the two dimensional case that the discretization error in the L 2 norm decreases like N - δ , where N is the number of unknowns. Our approach is suitable for solving a wide class of problems, among them piecewise defined data and tracking functionals acting only on a subdomain of Ω . We present several numerical results.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10589-015-9737-5</doi><tpages>35</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0926-6003
ispartof Computational optimization and applications, 2015-09, Vol.62 (1), p.31-65
issn 0926-6003
1573-2894
language eng
recordid cdi_proquest_miscellaneous_1744685311
source Business Source Complete; SpringerLink Journals - AutoHoldings
subjects Approximation
Boundary conditions
Boundary element method
Control theory
Convex and Discrete Geometry
Differential equations
Discretization
Estimates
Finite element analysis
Finite element method
Management Science
Mathematical analysis
Mathematics
Mathematics and Statistics
Norms
Operations Research
Operations Research/Decision Theory
Optimization
Partial differential equations
Statistics
Studies
Texts
Tracking
title Boundary concentrated finite elements for optimal control problems with distributed observation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T13%3A13%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Boundary%20concentrated%20finite%20elements%20for%20optimal%20control%20problems%20with%20distributed%20observation&rft.jtitle=Computational%20optimization%20and%20applications&rft.au=Beuchler,%20S.&rft.date=2015-09-01&rft.volume=62&rft.issue=1&rft.spage=31&rft.epage=65&rft.pages=31-65&rft.issn=0926-6003&rft.eissn=1573-2894&rft_id=info:doi/10.1007/s10589-015-9737-5&rft_dat=%3Cproquest_cross%3E1744685311%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1705400738&rft_id=info:pmid/&rfr_iscdi=true