Discovering frequency sensitive thalamic nuclei from EEG microstate informed resting state fMRI

Microstates (MS), the fingerprints of the momentarily and time-varying states of the brain derived from electroencephalography (EEG), are associated with the resting state networks (RSNs). However, using MS fluctuations along different EEG frequency bands to model the functional MRI (fMRI) signal ha...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:NeuroImage (Orlando, Fla.) Fla.), 2015-09, Vol.118, p.368-375
Hauptverfasser: Schwab, Simon, Koenig, Thomas, Morishima, Yosuke, Dierks, Thomas, Federspiel, Andrea, Jann, Kay
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 375
container_issue
container_start_page 368
container_title NeuroImage (Orlando, Fla.)
container_volume 118
creator Schwab, Simon
Koenig, Thomas
Morishima, Yosuke
Dierks, Thomas
Federspiel, Andrea
Jann, Kay
description Microstates (MS), the fingerprints of the momentarily and time-varying states of the brain derived from electroencephalography (EEG), are associated with the resting state networks (RSNs). However, using MS fluctuations along different EEG frequency bands to model the functional MRI (fMRI) signal has not been investigated so far, or elucidated the role of the thalamus as a fundamental gateway and a putative key structure in cortical functional networks. Therefore, in the current study, we used MS predictors in standard frequency bands to predict blood oxygenation level dependent (BOLD) signal fluctuations. We discovered that multivariate modeling of BOLD-fMRI using six EEG-MS classes in eight frequency bands strongly correlated with thalamic areas and large-scale cortical networks. Thalamic nuclei exhibited distinct patterns of correlations for individual MS that were associated with specific EEG frequency bands. Anterior and ventral thalamic nuclei were sensitive to the beta frequency band, medial nuclei were sensitive to both alpha and beta frequency bands, and posterior nuclei such as the pulvinar were sensitive to delta and theta frequency bands. These results demonstrate that EEG-MS informed fMRI can elucidate thalamic activity not directly observable by EEG, which may be highly relevant to understand the rapid formation of thalamocortical networks. •Thalamic activity related to EEG microstates (MS).•MS informed fMRI can elucidate thalamic activity not directly observable by EEG.•Thalamic nuclei exhibited distinct frequency tuning for individual MS.
doi_str_mv 10.1016/j.neuroimage.2015.06.001
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1744685283</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1053811915004772</els_id><sourcerecordid>1708900332</sourcerecordid><originalsourceid>FETCH-LOGICAL-c584t-214b926d9755e7e95761979ff75fdf7ea5cf4bdd8b942a29374dc0cbb91940ba3</originalsourceid><addsrcrecordid>eNqNkc1u1TAQhS0EoqXwCsgSGzYJY8eO7SW0l1KpCAnB2kqccfFVEhc7uVLfHqe3gMSGrmyNvvk55xBCGdQMWPtuX8-4phim7gZrDkzW0NYA7Ak5ZWBkZaTiT7e_bCrNmDkhL3LeA4BhQj8nJ7wFyUHzU2IvQnbxgCnMN9Qn_Lni7O5oxjmHJRyQLj-6sZuCo_PqRgyFiRPd7S5pqaWYl25BGmYf04QDTZiXbdCx7D9_vXpJnvluzPjq4T0j3z_uvp1_qq6_XF6dv7-unNRiqTgTveHtYJSUqLDc3zKjjPdK-sEr7KTzoh8G3RvBO24aJQYHru8NMwL6rjkjb49zb1MsGvJipyIMx7GbMa7ZMiVEqyXXzSNQxpVqiq2PQEEbgKbhBX3zD7qPa5qL5nuKSSaELJQ-Upt3OaG3t6mkmO4sA7tFa_f2b7R2i9ZCa-H-ltcPC9a-eP2n8XeWBfhwBLD4fAiYbHahpIlDSOgWO8Tw_y2_AGsLuXs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1708151445</pqid></control><display><type>article</type><title>Discovering frequency sensitive thalamic nuclei from EEG microstate informed resting state fMRI</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>Schwab, Simon ; Koenig, Thomas ; Morishima, Yosuke ; Dierks, Thomas ; Federspiel, Andrea ; Jann, Kay</creator><creatorcontrib>Schwab, Simon ; Koenig, Thomas ; Morishima, Yosuke ; Dierks, Thomas ; Federspiel, Andrea ; Jann, Kay</creatorcontrib><description>Microstates (MS), the fingerprints of the momentarily and time-varying states of the brain derived from electroencephalography (EEG), are associated with the resting state networks (RSNs). However, using MS fluctuations along different EEG frequency bands to model the functional MRI (fMRI) signal has not been investigated so far, or elucidated the role of the thalamus as a fundamental gateway and a putative key structure in cortical functional networks. Therefore, in the current study, we used MS predictors in standard frequency bands to predict blood oxygenation level dependent (BOLD) signal fluctuations. We discovered that multivariate modeling of BOLD-fMRI using six EEG-MS classes in eight frequency bands strongly correlated with thalamic areas and large-scale cortical networks. Thalamic nuclei exhibited distinct patterns of correlations for individual MS that were associated with specific EEG frequency bands. Anterior and ventral thalamic nuclei were sensitive to the beta frequency band, medial nuclei were sensitive to both alpha and beta frequency bands, and posterior nuclei such as the pulvinar were sensitive to delta and theta frequency bands. These results demonstrate that EEG-MS informed fMRI can elucidate thalamic activity not directly observable by EEG, which may be highly relevant to understand the rapid formation of thalamocortical networks. •Thalamic activity related to EEG microstates (MS).•MS informed fMRI can elucidate thalamic activity not directly observable by EEG.•Thalamic nuclei exhibited distinct frequency tuning for individual MS.</description><identifier>ISSN: 1053-8119</identifier><identifier>EISSN: 1095-9572</identifier><identifier>DOI: 10.1016/j.neuroimage.2015.06.001</identifier><identifier>PMID: 26052082</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Adult ; Brain Mapping - methods ; Brain Waves ; Correlation ; Deltas ; EEG microstates ; EEG topography ; Electroencephalography ; Electroencephalography - methods ; Female ; Fluctuation ; fMRI ; Frequency bands ; Humans ; Magnetic Resonance Imaging - methods ; Male ; Mathematical models ; Networks ; NMR ; Nuclear magnetic resonance ; Nuclei ; Resting-state ; Studies ; Thalamus ; Thalamus - physiology ; Topography ; Young Adult</subject><ispartof>NeuroImage (Orlando, Fla.), 2015-09, Vol.118, p.368-375</ispartof><rights>2015 Elsevier Inc.</rights><rights>Copyright © 2015 Elsevier Inc. All rights reserved.</rights><rights>Copyright Elsevier Limited Sep 1, 2015</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c584t-214b926d9755e7e95761979ff75fdf7ea5cf4bdd8b942a29374dc0cbb91940ba3</citedby><cites>FETCH-LOGICAL-c584t-214b926d9755e7e95761979ff75fdf7ea5cf4bdd8b942a29374dc0cbb91940ba3</cites><orcidid>0000-0002-1588-2689</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S1053811915004772$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65534</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26052082$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Schwab, Simon</creatorcontrib><creatorcontrib>Koenig, Thomas</creatorcontrib><creatorcontrib>Morishima, Yosuke</creatorcontrib><creatorcontrib>Dierks, Thomas</creatorcontrib><creatorcontrib>Federspiel, Andrea</creatorcontrib><creatorcontrib>Jann, Kay</creatorcontrib><title>Discovering frequency sensitive thalamic nuclei from EEG microstate informed resting state fMRI</title><title>NeuroImage (Orlando, Fla.)</title><addtitle>Neuroimage</addtitle><description>Microstates (MS), the fingerprints of the momentarily and time-varying states of the brain derived from electroencephalography (EEG), are associated with the resting state networks (RSNs). However, using MS fluctuations along different EEG frequency bands to model the functional MRI (fMRI) signal has not been investigated so far, or elucidated the role of the thalamus as a fundamental gateway and a putative key structure in cortical functional networks. Therefore, in the current study, we used MS predictors in standard frequency bands to predict blood oxygenation level dependent (BOLD) signal fluctuations. We discovered that multivariate modeling of BOLD-fMRI using six EEG-MS classes in eight frequency bands strongly correlated with thalamic areas and large-scale cortical networks. Thalamic nuclei exhibited distinct patterns of correlations for individual MS that were associated with specific EEG frequency bands. Anterior and ventral thalamic nuclei were sensitive to the beta frequency band, medial nuclei were sensitive to both alpha and beta frequency bands, and posterior nuclei such as the pulvinar were sensitive to delta and theta frequency bands. These results demonstrate that EEG-MS informed fMRI can elucidate thalamic activity not directly observable by EEG, which may be highly relevant to understand the rapid formation of thalamocortical networks. •Thalamic activity related to EEG microstates (MS).•MS informed fMRI can elucidate thalamic activity not directly observable by EEG.•Thalamic nuclei exhibited distinct frequency tuning for individual MS.</description><subject>Adult</subject><subject>Brain Mapping - methods</subject><subject>Brain Waves</subject><subject>Correlation</subject><subject>Deltas</subject><subject>EEG microstates</subject><subject>EEG topography</subject><subject>Electroencephalography</subject><subject>Electroencephalography - methods</subject><subject>Female</subject><subject>Fluctuation</subject><subject>fMRI</subject><subject>Frequency bands</subject><subject>Humans</subject><subject>Magnetic Resonance Imaging - methods</subject><subject>Male</subject><subject>Mathematical models</subject><subject>Networks</subject><subject>NMR</subject><subject>Nuclear magnetic resonance</subject><subject>Nuclei</subject><subject>Resting-state</subject><subject>Studies</subject><subject>Thalamus</subject><subject>Thalamus - physiology</subject><subject>Topography</subject><subject>Young Adult</subject><issn>1053-8119</issn><issn>1095-9572</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNqNkc1u1TAQhS0EoqXwCsgSGzYJY8eO7SW0l1KpCAnB2kqccfFVEhc7uVLfHqe3gMSGrmyNvvk55xBCGdQMWPtuX8-4phim7gZrDkzW0NYA7Ak5ZWBkZaTiT7e_bCrNmDkhL3LeA4BhQj8nJ7wFyUHzU2IvQnbxgCnMN9Qn_Lni7O5oxjmHJRyQLj-6sZuCo_PqRgyFiRPd7S5pqaWYl25BGmYf04QDTZiXbdCx7D9_vXpJnvluzPjq4T0j3z_uvp1_qq6_XF6dv7-unNRiqTgTveHtYJSUqLDc3zKjjPdK-sEr7KTzoh8G3RvBO24aJQYHru8NMwL6rjkjb49zb1MsGvJipyIMx7GbMa7ZMiVEqyXXzSNQxpVqiq2PQEEbgKbhBX3zD7qPa5qL5nuKSSaELJQ-Upt3OaG3t6mkmO4sA7tFa_f2b7R2i9ZCa-H-ltcPC9a-eP2n8XeWBfhwBLD4fAiYbHahpIlDSOgWO8Tw_y2_AGsLuXs</recordid><startdate>201509</startdate><enddate>201509</enddate><creator>Schwab, Simon</creator><creator>Koenig, Thomas</creator><creator>Morishima, Yosuke</creator><creator>Dierks, Thomas</creator><creator>Federspiel, Andrea</creator><creator>Jann, Kay</creator><general>Elsevier Inc</general><general>Elsevier Limited</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TK</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>88G</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2M</scope><scope>M7P</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PSYQQ</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope><scope>7QO</scope><scope>7SC</scope><scope>7U5</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-1588-2689</orcidid></search><sort><creationdate>201509</creationdate><title>Discovering frequency sensitive thalamic nuclei from EEG microstate informed resting state fMRI</title><author>Schwab, Simon ; Koenig, Thomas ; Morishima, Yosuke ; Dierks, Thomas ; Federspiel, Andrea ; Jann, Kay</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c584t-214b926d9755e7e95761979ff75fdf7ea5cf4bdd8b942a29374dc0cbb91940ba3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Adult</topic><topic>Brain Mapping - methods</topic><topic>Brain Waves</topic><topic>Correlation</topic><topic>Deltas</topic><topic>EEG microstates</topic><topic>EEG topography</topic><topic>Electroencephalography</topic><topic>Electroencephalography - methods</topic><topic>Female</topic><topic>Fluctuation</topic><topic>fMRI</topic><topic>Frequency bands</topic><topic>Humans</topic><topic>Magnetic Resonance Imaging - methods</topic><topic>Male</topic><topic>Mathematical models</topic><topic>Networks</topic><topic>NMR</topic><topic>Nuclear magnetic resonance</topic><topic>Nuclei</topic><topic>Resting-state</topic><topic>Studies</topic><topic>Thalamus</topic><topic>Thalamus - physiology</topic><topic>Topography</topic><topic>Young Adult</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Schwab, Simon</creatorcontrib><creatorcontrib>Koenig, Thomas</creatorcontrib><creatorcontrib>Morishima, Yosuke</creatorcontrib><creatorcontrib>Dierks, Thomas</creatorcontrib><creatorcontrib>Federspiel, Andrea</creatorcontrib><creatorcontrib>Jann, Kay</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Neurosciences Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Psychology Database (Alumni)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>ProQuest Psychology</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest One Psychology</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>Biotechnology Research Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>NeuroImage (Orlando, Fla.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Schwab, Simon</au><au>Koenig, Thomas</au><au>Morishima, Yosuke</au><au>Dierks, Thomas</au><au>Federspiel, Andrea</au><au>Jann, Kay</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Discovering frequency sensitive thalamic nuclei from EEG microstate informed resting state fMRI</atitle><jtitle>NeuroImage (Orlando, Fla.)</jtitle><addtitle>Neuroimage</addtitle><date>2015-09</date><risdate>2015</risdate><volume>118</volume><spage>368</spage><epage>375</epage><pages>368-375</pages><issn>1053-8119</issn><eissn>1095-9572</eissn><abstract>Microstates (MS), the fingerprints of the momentarily and time-varying states of the brain derived from electroencephalography (EEG), are associated with the resting state networks (RSNs). However, using MS fluctuations along different EEG frequency bands to model the functional MRI (fMRI) signal has not been investigated so far, or elucidated the role of the thalamus as a fundamental gateway and a putative key structure in cortical functional networks. Therefore, in the current study, we used MS predictors in standard frequency bands to predict blood oxygenation level dependent (BOLD) signal fluctuations. We discovered that multivariate modeling of BOLD-fMRI using six EEG-MS classes in eight frequency bands strongly correlated with thalamic areas and large-scale cortical networks. Thalamic nuclei exhibited distinct patterns of correlations for individual MS that were associated with specific EEG frequency bands. Anterior and ventral thalamic nuclei were sensitive to the beta frequency band, medial nuclei were sensitive to both alpha and beta frequency bands, and posterior nuclei such as the pulvinar were sensitive to delta and theta frequency bands. These results demonstrate that EEG-MS informed fMRI can elucidate thalamic activity not directly observable by EEG, which may be highly relevant to understand the rapid formation of thalamocortical networks. •Thalamic activity related to EEG microstates (MS).•MS informed fMRI can elucidate thalamic activity not directly observable by EEG.•Thalamic nuclei exhibited distinct frequency tuning for individual MS.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>26052082</pmid><doi>10.1016/j.neuroimage.2015.06.001</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-1588-2689</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1053-8119
ispartof NeuroImage (Orlando, Fla.), 2015-09, Vol.118, p.368-375
issn 1053-8119
1095-9572
language eng
recordid cdi_proquest_miscellaneous_1744685283
source MEDLINE; Elsevier ScienceDirect Journals
subjects Adult
Brain Mapping - methods
Brain Waves
Correlation
Deltas
EEG microstates
EEG topography
Electroencephalography
Electroencephalography - methods
Female
Fluctuation
fMRI
Frequency bands
Humans
Magnetic Resonance Imaging - methods
Male
Mathematical models
Networks
NMR
Nuclear magnetic resonance
Nuclei
Resting-state
Studies
Thalamus
Thalamus - physiology
Topography
Young Adult
title Discovering frequency sensitive thalamic nuclei from EEG microstate informed resting state fMRI
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-15T07%3A45%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Discovering%20frequency%20sensitive%20thalamic%20nuclei%20from%20EEG%20microstate%20informed%20resting%20state%20fMRI&rft.jtitle=NeuroImage%20(Orlando,%20Fla.)&rft.au=Schwab,%20Simon&rft.date=2015-09&rft.volume=118&rft.spage=368&rft.epage=375&rft.pages=368-375&rft.issn=1053-8119&rft.eissn=1095-9572&rft_id=info:doi/10.1016/j.neuroimage.2015.06.001&rft_dat=%3Cproquest_cross%3E1708900332%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1708151445&rft_id=info:pmid/26052082&rft_els_id=S1053811915004772&rfr_iscdi=true